3kyo: Difference between revisions
No edit summary |
No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 3: | Line 3: | ||
<StructureSection load='3kyo' size='340' side='right'caption='[[3kyo]], [[Resolution|resolution]] 1.70Å' scene=''> | <StructureSection load='3kyo' size='340' side='right'caption='[[3kyo]], [[Resolution|resolution]] 1.70Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3kyo]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/ | <table><tr><td colspan='2'>[[3kyo]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3KYO OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3KYO FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.7Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CO:COBALT+(II)+ION'>CO</scene></td></tr> | |||
<tr id=' | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3kyo FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3kyo OCA], [https://pdbe.org/3kyo PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3kyo RCSB], [https://www.ebi.ac.uk/pdbsum/3kyo PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3kyo ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3kyo FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3kyo OCA], [https://pdbe.org/3kyo PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3kyo RCSB], [https://www.ebi.ac.uk/pdbsum/3kyo PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3kyo ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/HLAG_HUMAN HLAG_HUMAN] Involved in the presentation of foreign antigens to the immune system. Plays a role in maternal tolerance of the fetus by mediating protection from the deleterious effects of natural killer cells, cytotoxic T-lymphocytes, macrophages and mononuclear cells. | |||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 18: | Line 15: | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ky/3kyo_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ky/3kyo_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
Line 35: | Line 32: | ||
==See Also== | ==See Also== | ||
*[[Beta-2 microglobulin 3D structures|Beta-2 microglobulin 3D structures]] | *[[Beta-2 microglobulin 3D structures|Beta-2 microglobulin 3D structures]] | ||
*[[MHC 3D structures|MHC 3D structures]] | |||
*[[MHC I 3D structures|MHC I 3D structures]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Homo sapiens]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Clements | [[Category: Clements CS]] | ||
[[Category: Rossjohn | [[Category: Rossjohn J]] | ||
[[Category: Walpole | [[Category: Walpole NG]] | ||
Latest revision as of 12:22, 30 October 2024
Crystal structure of HLA-G presenting KLPAQFYIL peptideCrystal structure of HLA-G presenting KLPAQFYIL peptide
Structural highlights
FunctionHLAG_HUMAN Involved in the presentation of foreign antigens to the immune system. Plays a role in maternal tolerance of the fetus by mediating protection from the deleterious effects of natural killer cells, cytotoxic T-lymphocytes, macrophages and mononuclear cells. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe highly polymorphic major histocompatibility complex class Ia (MHC-Ia) molecules present a broad array of peptides to the clonotypically diverse alphabeta T-cell receptors. In contrast, MHC-Ib molecules exhibit limited polymorphism and bind a more restricted peptide repertoire, in keeping with their major role in innate immunity. Nevertheless, some MHC-Ib molecules do play a role in adaptive immunity. While human leukocyte antigen E (HLA-E), the MHC-Ib molecule, binds a very restricted repertoire of peptides, the peptide binding preferences of HLA-G, the class Ib molecule, are less stringent, although the basis by which HLA-G can bind various peptides is unclear. To investigate how HLA-G can accommodate different peptides, we compared the structure of HLA-G bound to three naturally abundant self-peptides (RIIPRHLQL, KGPPAALTL and KLPQAFYIL) and their thermal stabilities. The conformation of HLA-G(KGPPAALTL) was very similar to that of the HLA-G(RIIPRHLQL) structure. However, the structure of HLA-G(KLPQAFYIL) not only differed in the conformation of the bound peptide but also caused a small shift in the alpha2 helix of HLA-G. Furthermore, the relative stability of HLA-G was observed to be dependent on the nature of the bound peptide. These peptide-dependent effects on the substructure of the monomorphic HLA-G are likely to impact on its recognition by receptors of both innate and adaptive immune systems. The structure and stability of the monomorphic HLA-G are influenced by the nature of the bound peptide.,Walpole NG, Kjer-Nielsen L, Kostenko L, McCluskey J, Brooks AG, Rossjohn J, Clements CS J Mol Biol. 2010 Mar 26;397(2):467-80. Epub 2010 Feb 1. PMID:20122941[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|