5ueh: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:


==Structure of GSTO1 covalently conjugated to quinolinic acid fluorosulfate==
==Structure of GSTO1 covalently conjugated to quinolinic acid fluorosulfate==
<StructureSection load='5ueh' size='340' side='right' caption='[[5ueh]], [[Resolution|resolution]] 2.00&Aring;' scene=''>
<StructureSection load='5ueh' size='340' side='right'caption='[[5ueh]], [[Resolution|resolution]] 2.00&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[5ueh]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5UEH OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5UEH FirstGlance]. <br>
<table><tr><td colspan='2'>[[5ueh]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5UEH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5UEH FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=85P:2-(4-chlorophenyl)-6-[(fluorosulfonyl)oxy]quinoline-4-carboxylic+acid'>85P</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2&#8491;</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GSTO1, GSTTLP28 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=85P:2-(4-chlorophenyl)-6-fluorosulfonyloxy-quinoline-4-carboxylic+acid'>85P</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5ueh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5ueh OCA], [http://pdbe.org/5ueh PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5ueh RCSB], [http://www.ebi.ac.uk/pdbsum/5ueh PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5ueh ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5ueh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5ueh OCA], [https://pdbe.org/5ueh PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5ueh RCSB], [https://www.ebi.ac.uk/pdbsum/5ueh PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5ueh ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/GSTO1_HUMAN GSTO1_HUMAN]] Exhibits glutathione-dependent thiol transferase and dehydroascorbate reductase activities. Has S-(phenacyl)glutathione reductase activity. Has also glutathione S-transferase activity. Participates in the biotransformation of inorganic arsenic and reduces monomethylarsonic acid (MMA) and dimethylarsonic acid.<ref>PMID:10783391</ref> <ref>PMID:11511179</ref> <ref>PMID:17226937</ref> <ref>PMID:18028863</ref> <ref>PMID:21106529</ref>
[https://www.uniprot.org/uniprot/GSTO1_HUMAN GSTO1_HUMAN] Exhibits glutathione-dependent thiol transferase and dehydroascorbate reductase activities. Has S-(phenacyl)glutathione reductase activity. Has also glutathione S-transferase activity. Participates in the biotransformation of inorganic arsenic and reduces monomethylarsonic acid (MMA) and dimethylarsonic acid.<ref>PMID:10783391</ref> <ref>PMID:11511179</ref> <ref>PMID:17226937</ref> <ref>PMID:18028863</ref> <ref>PMID:21106529</ref>  
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Line 19: Line 19:
</div>
</div>
<div class="pdbe-citations 5ueh" style="background-color:#fffaf0;"></div>
<div class="pdbe-citations 5ueh" style="background-color:#fffaf0;"></div>
==See Also==
*[[Glutathione S-transferase 3D structures|Glutathione S-transferase 3D structures]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Human]]
[[Category: Homo sapiens]]
[[Category: Kelly, J W]]
[[Category: Large Structures]]
[[Category: Mortenson, D E]]
[[Category: Kelly JW]]
[[Category: Wilson, I A]]
[[Category: Mortenson DE]]
[[Category: Arylfluorosulfate]]
[[Category: Wilson IA]]
[[Category: Covalent inhibitor]]
[[Category: Gst]]
[[Category: Transferase-oxidoreductase complex]]

Latest revision as of 15:14, 6 November 2024

Structure of GSTO1 covalently conjugated to quinolinic acid fluorosulfateStructure of GSTO1 covalently conjugated to quinolinic acid fluorosulfate

Structural highlights

5ueh is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

GSTO1_HUMAN Exhibits glutathione-dependent thiol transferase and dehydroascorbate reductase activities. Has S-(phenacyl)glutathione reductase activity. Has also glutathione S-transferase activity. Participates in the biotransformation of inorganic arsenic and reduces monomethylarsonic acid (MMA) and dimethylarsonic acid.[1] [2] [3] [4] [5]

Publication Abstract from PubMed

Drug candidates are generally discovered using biochemical screens employing an isolated target protein or by utilizing cell-based phenotypic assays. Both noncovalent and covalent hits emerge from such endeavors. Herein, we exemplify an "Inverse Drug Discovery" strategy in which organic compounds of intermediate complexity harboring weak, but activatable, electrophiles are matched with the protein(s) they react with in cells or cell lysate. An alkyne substructure in each candidate small molecule enables affinity chromatography-mass spectrometry, which produces a list of proteins that each distinct compound reacts with. A notable feature of this approach is that it is agnostic with respect to the cellular proteins targeted. To illustrate this strategy, we employed aryl fluorosulfates, an underexplored class of sulfur(VI) halides, that are generally unreactive unless activated by protein binding. Reversible aryl fluorosulfate binding, correct juxtaposition of protein side chain functional groups, and transition-state stabilization of the S(VI) exchange reaction all seem to be critical for conjugate formation. The aryl fluorosulfates studied thus far exhibit chemoselective reactivity toward Lys and, particularly, Tyr side chains, and can be used to target nonenzymes (e.g., a hormone carrier or a small-molecule carrier protein) as well as enzymes. The "Inverse Drug Discovery" strategy should be particularly attractive as a means to explore latent electrophiles not typically used in medicinal chemistry efforts, until one reacts with a protein target of exceptional interest. Structure-activity data can then be used to enhance the selectivity of conjugate formation or the covalent probe can be used as a competitor to develop noncovalent drug candidates. Here we use the "Inverse Drug Discovery" platform to identify and validate covalent ligands for 11 different human proteins. In the case of one of these proteins, we have identified and validated a small-molecule probe for the first time.

"Inverse Drug Discovery" Strategy To Identify Proteins That Are Targeted by Latent Electrophiles As Exemplified by Aryl Fluorosulfates.,Mortenson DE, Brighty GJ, Plate L, Bare G, Chen W, Li S, Wang H, Cravatt BF, Forli S, Powers ET, Sharpless KB, Wilson IA, Kelly JW J Am Chem Soc. 2018 Jan 10;140(1):200-210. doi: 10.1021/jacs.7b08366. Epub 2017, Dec 21. PMID:29265822[6]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Board PG, Coggan M, Chelvanayagam G, Easteal S, Jermiin LS, Schulte GK, Danley DE, Hoth LR, Griffor MC, Kamath AV, Rosner MH, Chrunyk BA, Perregaux DE, Gabel CA, Geoghegan KF, Pandit J. Identification, characterization, and crystal structure of the Omega class glutathione transferases. J Biol Chem. 2000 Aug 11;275(32):24798-806. PMID:10783391 doi:10.1074/jbc.M001706200
  2. Zakharyan RA, Sampayo-Reyes A, Healy SM, Tsaprailis G, Board PG, Liebler DC, Aposhian HV. Human monomethylarsonic acid (MMA(V)) reductase is a member of the glutathione-S-transferase superfamily. Chem Res Toxicol. 2001 Aug;14(8):1051-7. PMID:11511179
  3. Board PG, Anders MW. Glutathione transferase omega 1 catalyzes the reduction of S-(phenacyl)glutathiones to acetophenones. Chem Res Toxicol. 2007 Jan;20(1):149-54. PMID:17226937 doi:10.1021/tx600305y
  4. Board PG, Coggan M, Cappello J, Zhou H, Oakley AJ, Anders MW. S-(4-Nitrophenacyl)glutathione is a specific substrate for glutathione transferase omega 1-1. Anal Biochem. 2008 Mar 1;374(1):25-30. Epub 2007 Sep 29. PMID:18028863 doi:10.1016/j.ab.2007.09.029
  5. Zhou H, Brock J, Casarotto MG, Oakley AJ, Board PG. Novel folding and stability defects cause a deficiency of human glutathione transferase omega 1. J Biol Chem. 2011 Feb 11;286(6):4271-9. Epub 2010 Nov 24. PMID:21106529 doi:10.1074/jbc.M110.197822
  6. Mortenson DE, Brighty GJ, Plate L, Bare G, Chen W, Li S, Wang H, Cravatt BF, Forli S, Powers ET, Sharpless KB, Wilson IA, Kelly JW. "Inverse Drug Discovery" Strategy To Identify Proteins That Are Targeted by Latent Electrophiles As Exemplified by Aryl Fluorosulfates. J Am Chem Soc. 2018 Jan 10;140(1):200-210. doi: 10.1021/jacs.7b08366. Epub 2017, Dec 21. PMID:29265822 doi:http://dx.doi.org/10.1021/jacs.7b08366

5ueh, resolution 2.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA