5mop: Difference between revisions
m Protected "5mop" [edit=sysop:move=sysop] |
No edit summary Tag: Manual revert |
||
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Joint X-ray/neutron structure of cationic trypsin in its apo form== | |||
<StructureSection load='5mop' size='340' side='right'caption='[[5mop]], [[Resolution|resolution]] 0.99Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[5mop]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Bos_taurus Bos taurus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5MOP OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5MOP FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Hybrid , Neutron Diffraction , X-ray diffraction, [[Resolution|Resolution]] 0.99Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=DOD:DEUTERATED+WATER'>DOD</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5mop FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5mop OCA], [https://pdbe.org/5mop PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5mop RCSB], [https://www.ebi.ac.uk/pdbsum/5mop PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5mop ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/TRY1_BOVIN TRY1_BOVIN] | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Hydrogen bonds are key interactions determining protein-ligand binding affinity and therefore fundamental to any biological process. Unfortunately, explicit structural information about hydrogen positions and thus H-bonds in protein-ligand complexes is extremely rare and similarly the important role of water during binding remains poorly understood. Here, we report on neutron structures of trypsin determined at very high resolutions </=1.5 A in uncomplexed and inhibited state complemented by X-ray and thermodynamic data and computer simulations. Our structures show the precise geometry of H-bonds between protein and the inhibitors N-amidinopiperidine and benzamidine along with the dynamics of the residual solvation pattern. Prior to binding, the ligand-free binding pocket is occupied by water molecules characterized by a paucity of H-bonds and high mobility resulting in an imperfect hydration of the critical residue Asp189. This phenomenon likely constitutes a key factor fueling ligand binding via water displacement and helps improving our current view on water influencing protein-ligand recognition. | |||
Intriguing role of water in protein-ligand binding studied by neutron crystallography on trypsin complexes.,Schiebel J, Gaspari R, Wulsdorf T, Ngo K, Sohn C, Schrader TE, Cavalli A, Ostermann A, Heine A, Klebe G Nat Commun. 2018 Sep 3;9(1):3559. doi: 10.1038/s41467-018-05769-2. PMID:30177695<ref>PMID:30177695</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
[[Category: | </div> | ||
<div class="pdbe-citations 5mop" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Trypsin 3D structures|Trypsin 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Bos taurus]] | |||
[[Category: Large Structures]] | |||
[[Category: Heine A]] | |||
[[Category: Klebe G]] | |||
[[Category: Ostermann A]] | |||
[[Category: Schiebel J]] | |||
[[Category: Schrader TE]] |
Latest revision as of 12:11, 23 October 2024
Joint X-ray/neutron structure of cationic trypsin in its apo formJoint X-ray/neutron structure of cationic trypsin in its apo form
Structural highlights
FunctionPublication Abstract from PubMedHydrogen bonds are key interactions determining protein-ligand binding affinity and therefore fundamental to any biological process. Unfortunately, explicit structural information about hydrogen positions and thus H-bonds in protein-ligand complexes is extremely rare and similarly the important role of water during binding remains poorly understood. Here, we report on neutron structures of trypsin determined at very high resolutions </=1.5 A in uncomplexed and inhibited state complemented by X-ray and thermodynamic data and computer simulations. Our structures show the precise geometry of H-bonds between protein and the inhibitors N-amidinopiperidine and benzamidine along with the dynamics of the residual solvation pattern. Prior to binding, the ligand-free binding pocket is occupied by water molecules characterized by a paucity of H-bonds and high mobility resulting in an imperfect hydration of the critical residue Asp189. This phenomenon likely constitutes a key factor fueling ligand binding via water displacement and helps improving our current view on water influencing protein-ligand recognition. Intriguing role of water in protein-ligand binding studied by neutron crystallography on trypsin complexes.,Schiebel J, Gaspari R, Wulsdorf T, Ngo K, Sohn C, Schrader TE, Cavalli A, Ostermann A, Heine A, Klebe G Nat Commun. 2018 Sep 3;9(1):3559. doi: 10.1038/s41467-018-05769-2. PMID:30177695[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|