2nui: Difference between revisions
No edit summary |
No edit summary |
||
Line 15: | Line 15: | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/nu/2nui_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/nu/2nui_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> |
Latest revision as of 12:22, 6 November 2024
X-ray Structure of synthetic [D83A]RNase AX-ray Structure of synthetic [D83A]RNase A
Structural highlights
FunctionRNAS1_BOVIN Endonuclease that catalyzes the cleavage of RNA on the 3' side of pyrimidine nucleotides. Acts on single stranded and double stranded RNA.[1] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe total chemical synthesis of RNase A using modern chemical ligation methods is described, illustrating the significant advances that have been made in chemical protein synthesis since Gutte and Merrifield's pioneering preparation of RNase A in 1969. The identity of the synthetic product was confirmed through rigorous characterization, including the determination of the X-ray crystal structure to 1.1 Angstrom resolution. Total synthesis by modern chemical ligation methods and high resolution (1.1 A) X-ray structure of ribonuclease A.,Boerema DJ, Tereshko VA, Kent SB Biopolymers. 2008;90(3):278-86. PMID:17610259[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|