2z2y: Difference between revisions
No edit summary |
No edit summary |
||
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Crystal structure of autoprocessed form of Tk-subtilisin== | ==Crystal structure of autoprocessed form of Tk-subtilisin== | ||
<StructureSection load='2z2y' size='340' side='right' caption='[[2z2y]], [[Resolution|resolution]] 1.89Å' scene=''> | <StructureSection load='2z2y' size='340' side='right'caption='[[2z2y]], [[Resolution|resolution]] 1.89Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2z2y]] is a 4 chain structure with sequence from [ | <table><tr><td colspan='2'>[[2z2y]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Thermococcus_kodakarensis_KOD1 Thermococcus kodakarensis KOD1]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2Z2Y OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2Z2Y FirstGlance]. <br> | ||
</td></tr><tr><td class="sblockLbl"><b>[[ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.89Å</td></tr> | ||
<tr><td class="sblockLbl"><b>[[ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2z2y FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2z2y OCA], [https://pdbe.org/2z2y PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2z2y RCSB], [https://www.ebi.ac.uk/pdbsum/2z2y PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2z2y ProSAT]</span></td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | </table> | ||
<table> | == Function == | ||
[https://www.uniprot.org/uniprot/TKSU_THEKO TKSU_THEKO] Has a broad substrate specificity with a slight preference to large hydrophobic amino acid residues at the P1 position. | |||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Check<jmol> | Check<jmol> | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/z2/2z2y_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/z2/2z2y_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2z2y ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
Line 26: | Line 28: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | </div> | ||
<div class="pdbe-citations 2z2y" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== | ||
*[[Subtilisin|Subtilisin]] | *[[Subtilisin 3D structures|Subtilisin 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Thermococcus kodakarensis | [[Category: Thermococcus kodakarensis KOD1]] | ||
[[Category: Kanaya | [[Category: Kanaya S]] | ||
[[Category: Koga | [[Category: Koga Y]] | ||
[[Category: Matsumura | [[Category: Matsumura H]] | ||
[[Category: Takano | [[Category: Takano K]] | ||
[[Category: Tanaka | [[Category: Tanaka S]] | ||
Latest revision as of 11:40, 30 October 2024
Crystal structure of autoprocessed form of Tk-subtilisinCrystal structure of autoprocessed form of Tk-subtilisin
Structural highlights
FunctionTKSU_THEKO Has a broad substrate specificity with a slight preference to large hydrophobic amino acid residues at the P1 position. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedSubtilisin from the hyperthermophilic archaeon Thermococcus kodakaraensis (Tk-subtilisin) is matured from Pro-Tk-subtilisin upon autoprocessing and degradation of the propeptide. The crystal structures of the autoprocessed and mature forms of Tk-subtilisin were determined at 1.89 A and 1.70 A resolution, respectively. Comparison of these structures with that of unautoprocessed Pro-Tk-subtilisin indicates that the structure of Tk-subtilisin is not seriously changed during maturation. However, one unique Ca(2+)-binding site (Ca-7) is identified in these structures. In addition, the N-terminal region of the mature domain (Gly70-Pro82), which binds tightly to the main body in the unautoprocessed form, is disordered and mostly truncated in the autoprocessed and mature forms, respectively. Interestingly, this site is formed also in the unautoprocessed form when its crystals are soaked with 10 mM CaCl(2), as revealed by the 1.87 A structure. Along with the formation of this site, the N-terminal region (Leu75-Thr80) is disordered, with the scissile peptide bond contacting with the active site. These results indicate that the calcium ion binds weakly to the Ca-7 site in the unautoprocessed form, but is trapped upon autoprocessing. We propose that the Ca-7 site is required to promote the autoprocessing reaction by stabilizing the autoprocessed form, in which the new N terminus of the mature domain is structurally disordered. Furthermore, the crystal structure of the Tk-propeptide:S324A-subtilisin complex, which was formed by the addition of separately expressed proteins, was determined at 1.65 A resolution. This structure is virtually identical with that of the autoprocessed form, indicating that the interaction between the two domains is highly intensive and specific. Four new crystal structures of Tk-subtilisin in unautoprocessed, autoprocessed and mature forms: insight into structural changes during maturation.,Tanaka S, Matsumura H, Koga Y, Takano K, Kanaya S J Mol Biol. 2007 Sep 28;372(4):1055-69. Epub 2007 Jul 26. PMID:17706669[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|