1kuk: Difference between revisions
No edit summary |
No edit summary |
||
(15 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== | ==Crystal Structure of a Taiwan Habu Venom Metalloproteinase complexed with pEKW.== | ||
<StructureSection load='1kuk' size='340' side='right'caption='[[1kuk]], [[Resolution|resolution]] 1.45Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1kuk]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Protobothrops_mucrosquamatus Protobothrops mucrosquamatus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1KUK OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1KUK FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.45Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CD:CADMIUM+ION'>CD</scene>, <scene name='pdbligand=PCA:PYROGLUTAMIC+ACID'>PCA</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1kuk FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1kuk OCA], [https://pdbe.org/1kuk PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1kuk RCSB], [https://www.ebi.ac.uk/pdbsum/1kuk PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1kuk ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/VM2T3_PROMU VM2T3_PROMU] Snake venom metalloproteinase TM-3: fibrin(ogen)olytic protease which cleaves the Aalpha chain of fibrinogen (FGA) first followed by the Bbeta chain (FGB) and shows relatively low activity on the gamma chain (FGG).<ref>PMID:8068721</ref> <ref>PMID:8193588</ref> Disintegrin trimucrin: inhibits platelet aggregation induced by ADP, thrombin, platelet-activating factor and collagen. Acts by inhibiting fibrinogen interaction with platelet receptors GPIIb/GPIIIa (ITGA2B/ITGB3).<ref>PMID:8068721</ref> <ref>PMID:8193588</ref> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ku/1kuk_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1kuk ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Venoms from crotalid and viperid snakes contain several peptide inhibitors which regulate the proteolytic activities of their snake-venom metalloproteinases (SVMPs) in a reversible manner under physiological conditions. In this report, we describe the high-resolution crystal structures of a SVMP, TM-3, from Taiwan habu (Trimeresurus mucrosquamatus) cocrystallized with the endogenous inhibitors pyroGlu-Asn-Trp (pENW), pyroGlu-Gln-Trp (pEQW) or pyroGlu-Lys-Trp (pEKW). The binding of inhibitors causes some of the residues around the inhibitor-binding environment of TM-3 to slightly move away from the active-site center, and displaces two metal-coordinated water molecules by the C-terminal carboxylic group of the inhibitors. This binding adopts a retro-manner principally stabilized by four possible hydrogen bonds. The Trp indole ring of the inhibitors is stacked against the imidazole of His143 in the S-1 site of the proteinase. Results from the study of synthetic inhibitor analogues showed the primary specificity of Trp residue of the inhibitors at the P-1 site, corroborating the stacking effect observed in our structures. Furthermore, we have made a detailed comparison of our structures with the binding modes of other inhibitors including batimastat, a hydroxamate inhibitor, and a barbiturate derivative. It suggests a close correlation between the inhibitory activity of an inhibitor and its ability to fill the S-1 pocket of the proteinase. Our work may provide insights into the rational design of small molecules that bind to this class of zinc-metalloproteinases. | Venoms from crotalid and viperid snakes contain several peptide inhibitors which regulate the proteolytic activities of their snake-venom metalloproteinases (SVMPs) in a reversible manner under physiological conditions. In this report, we describe the high-resolution crystal structures of a SVMP, TM-3, from Taiwan habu (Trimeresurus mucrosquamatus) cocrystallized with the endogenous inhibitors pyroGlu-Asn-Trp (pENW), pyroGlu-Gln-Trp (pEQW) or pyroGlu-Lys-Trp (pEKW). The binding of inhibitors causes some of the residues around the inhibitor-binding environment of TM-3 to slightly move away from the active-site center, and displaces two metal-coordinated water molecules by the C-terminal carboxylic group of the inhibitors. This binding adopts a retro-manner principally stabilized by four possible hydrogen bonds. The Trp indole ring of the inhibitors is stacked against the imidazole of His143 in the S-1 site of the proteinase. Results from the study of synthetic inhibitor analogues showed the primary specificity of Trp residue of the inhibitors at the P-1 site, corroborating the stacking effect observed in our structures. Furthermore, we have made a detailed comparison of our structures with the binding modes of other inhibitors including batimastat, a hydroxamate inhibitor, and a barbiturate derivative. It suggests a close correlation between the inhibitory activity of an inhibitor and its ability to fill the S-1 pocket of the proteinase. Our work may provide insights into the rational design of small molecules that bind to this class of zinc-metalloproteinases. | ||
Determinants of the inhibition of a Taiwan habu venom metalloproteinase by its endogenous inhibitors revealed by X-ray crystallography and synthetic inhibitor analogues.,Huang KF, Chiou SH, Ko TP, Wang AH Eur J Biochem. 2002 Jun;269(12):3047-56. PMID:12071970<ref>PMID:12071970</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
[[Category: | <div class="pdbe-citations 1kuk" style="background-color:#fffaf0;"></div> | ||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Large Structures]] | |||
[[Category: Protobothrops mucrosquamatus]] | [[Category: Protobothrops mucrosquamatus]] | ||
[[Category: Chiou SH]] | |||
[[Category: Chiou | [[Category: Huang KF]] | ||
[[Category: Huang | [[Category: Ko TP]] | ||
[[Category: Ko | [[Category: Wang AHJ]] | ||
[[Category: Wang | |||