1s6z: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(17 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1s6z.gif|left|200px]]<br /><applet load="1s6z" size="350" color="white" frame="true" align="right" spinBox="true"
caption="1s6z, resolution 1.50&Aring;" />
'''Enhanced Green Fluorescent Protein Containing the Y66L Substitution'''<br />


==Overview==
==Enhanced Green Fluorescent Protein Containing the Y66L Substitution==
<StructureSection load='1s6z' size='340' side='right'caption='[[1s6z]], [[Resolution|resolution]] 1.50&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[1s6z]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1S6Z OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1S6Z FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.5&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=CR0:[2-(1-AMINO-2-HYDROXYPROPYL)-2-HYDROXY-4-ISOBUTYL-5-OXO-2,5-DIHYDRO-1H-IMIDAZOL-1-YL]ACETALDEHYDE'>CR0</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1s6z FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1s6z OCA], [https://pdbe.org/1s6z PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1s6z RCSB], [https://www.ebi.ac.uk/pdbsum/1s6z PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1s6z ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/GFP_AEQVI GFP_AEQVI] Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin.
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/s6/1s6z_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1s6z ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The crystal structure of a colorless variant of green fluorescent protein (GFP) containing the Y66L substitution has been determined to 1.5 A. Crystallographic evidence is presented for the formation of a trapped intermediate on the pathway of chromophore maturation, where the peptide backbone of residues 65-67 has condensed to form a five-membered heterocyclic ring. The hydroxyl leaving group remains attached to the ring as confirmed by high-resolution electrospray mass spectrometry. The alpha-carbon of residue 66 exhibits trigonal planar geometry, consistent with ring oxidation by molecular oxygen. Side chain positions of surrounding residues are not perturbed, in contrast to structural results obtained for the GFPsol-S65G/Y66G variant [Barondeau, D. P., Putnam, C. D., Kassmann, C. J., Tainer, J. A., and Getzoff, E. D. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 12111-12116]. The data are in accord with a reaction pathway in which dehydration is the last of three chemical steps in GFP chromophore formation. A novel mechanism for chromophore biosynthesis is proposed: when the protein folds, the backbone condenses to form a cyclopentyl tetrahedral intermediate. In the second step, the ring is oxidized by molecular oxygen. In the third and final step, elimination of the hydroxyl leaving group as water is coupled to a proton transfer reaction that may proceed via hydrogen-bonded solvent molecules. Replacement of the aromatic Tyr66 with an aliphatic residue appears to have a profound effect on the efficiency of ring dehydration. The proposed mechanism has important implications for understanding the factors that limit the maturation rate of GFP.
The crystal structure of a colorless variant of green fluorescent protein (GFP) containing the Y66L substitution has been determined to 1.5 A. Crystallographic evidence is presented for the formation of a trapped intermediate on the pathway of chromophore maturation, where the peptide backbone of residues 65-67 has condensed to form a five-membered heterocyclic ring. The hydroxyl leaving group remains attached to the ring as confirmed by high-resolution electrospray mass spectrometry. The alpha-carbon of residue 66 exhibits trigonal planar geometry, consistent with ring oxidation by molecular oxygen. Side chain positions of surrounding residues are not perturbed, in contrast to structural results obtained for the GFPsol-S65G/Y66G variant [Barondeau, D. P., Putnam, C. D., Kassmann, C. J., Tainer, J. A., and Getzoff, E. D. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 12111-12116]. The data are in accord with a reaction pathway in which dehydration is the last of three chemical steps in GFP chromophore formation. A novel mechanism for chromophore biosynthesis is proposed: when the protein folds, the backbone condenses to form a cyclopentyl tetrahedral intermediate. In the second step, the ring is oxidized by molecular oxygen. In the third and final step, elimination of the hydroxyl leaving group as water is coupled to a proton transfer reaction that may proceed via hydrogen-bonded solvent molecules. Replacement of the aromatic Tyr66 with an aliphatic residue appears to have a profound effect on the efficiency of ring dehydration. The proposed mechanism has important implications for understanding the factors that limit the maturation rate of GFP.


==About this Structure==
The crystal structure of the Y66L variant of green fluorescent protein supports a cyclization-oxidation-dehydration mechanism for chromophore maturation.,Rosenow MA, Huffman HA, Phail ME, Wachter RM Biochemistry. 2004 Apr 20;43(15):4464-72. PMID:15078092<ref>PMID:15078092</ref>
1S6Z is a [http://en.wikipedia.org/wiki/Single_protein Single protein] structure of sequence from [http://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct] with <scene name='pdbligand=CL:'>CL</scene> as [http://en.wikipedia.org/wiki/ligand ligand]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1S6Z OCA].


==Reference==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
The crystal structure of the Y66L variant of green fluorescent protein supports a cyclization-oxidation-dehydration mechanism for chromophore maturation., Rosenow MA, Huffman HA, Phail ME, Wachter RM, Biochemistry. 2004 Apr 20;43(15):4464-72. PMID:[http://ispc.weizmann.ac.il//pmbin/getpm?pmid=15078092 15078092]
</div>
[[Category: Single protein]]
<div class="pdbe-citations 1s6z" style="background-color:#fffaf0;"></div>
 
==See Also==
*[[Green Fluorescent Protein 3D structures|Green Fluorescent Protein 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Large Structures]]
[[Category: Synthetic construct]]
[[Category: Synthetic construct]]
[[Category: Huffman, H A.]]
[[Category: Huffman HA]]
[[Category: Phail, M E.]]
[[Category: Phail ME]]
[[Category: Rosenow, M A.]]
[[Category: Rosenow MA]]
[[Category: Wachter, R M.]]
[[Category: Wachter RM]]
[[Category: CL]]
[[Category: backbone cyclization]]
[[Category: chromophore]]
[[Category: eleven-stranded beta barrel]]
[[Category: gfp-like protein]]
[[Category: trapped intermediate]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Feb 21 14:58:40 2008''

Latest revision as of 10:22, 30 October 2024

Enhanced Green Fluorescent Protein Containing the Y66L SubstitutionEnhanced Green Fluorescent Protein Containing the Y66L Substitution

Structural highlights

1s6z is a 1 chain structure with sequence from Synthetic construct. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.5Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

GFP_AEQVI Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The crystal structure of a colorless variant of green fluorescent protein (GFP) containing the Y66L substitution has been determined to 1.5 A. Crystallographic evidence is presented for the formation of a trapped intermediate on the pathway of chromophore maturation, where the peptide backbone of residues 65-67 has condensed to form a five-membered heterocyclic ring. The hydroxyl leaving group remains attached to the ring as confirmed by high-resolution electrospray mass spectrometry. The alpha-carbon of residue 66 exhibits trigonal planar geometry, consistent with ring oxidation by molecular oxygen. Side chain positions of surrounding residues are not perturbed, in contrast to structural results obtained for the GFPsol-S65G/Y66G variant [Barondeau, D. P., Putnam, C. D., Kassmann, C. J., Tainer, J. A., and Getzoff, E. D. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 12111-12116]. The data are in accord with a reaction pathway in which dehydration is the last of three chemical steps in GFP chromophore formation. A novel mechanism for chromophore biosynthesis is proposed: when the protein folds, the backbone condenses to form a cyclopentyl tetrahedral intermediate. In the second step, the ring is oxidized by molecular oxygen. In the third and final step, elimination of the hydroxyl leaving group as water is coupled to a proton transfer reaction that may proceed via hydrogen-bonded solvent molecules. Replacement of the aromatic Tyr66 with an aliphatic residue appears to have a profound effect on the efficiency of ring dehydration. The proposed mechanism has important implications for understanding the factors that limit the maturation rate of GFP.

The crystal structure of the Y66L variant of green fluorescent protein supports a cyclization-oxidation-dehydration mechanism for chromophore maturation.,Rosenow MA, Huffman HA, Phail ME, Wachter RM Biochemistry. 2004 Apr 20;43(15):4464-72. PMID:15078092[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Rosenow MA, Huffman HA, Phail ME, Wachter RM. The crystal structure of the Y66L variant of green fluorescent protein supports a cyclization-oxidation-dehydration mechanism for chromophore maturation. Biochemistry. 2004 Apr 20;43(15):4464-72. PMID:15078092 doi:10.1021/bi0361315

1s6z, resolution 1.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA