2q9e: Difference between revisions
m Protected "2q9e" [edit=sysop:move=sysop] |
No edit summary |
||
(9 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
< | ==Structure of spin-labeled T4 lysozyme mutant S44R1== | ||
<StructureSection load='2q9e' size='340' side='right'caption='[[2q9e]], [[Resolution|resolution]] 2.10Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2q9e]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_virus_T4 Escherichia virus T4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2Q9E OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2Q9E FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">EPR , Hybrid , X-ray diffraction, [[Resolution|Resolution]] 2.1Å</td></tr> | |||
- | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=HED:2-HYDROXYETHYL+DISULFIDE'>HED</scene>, <scene name='pdbligand=MTN:S-[(1-OXYL-2,2,5,5-TETRAMETHYL-2,5-DIHYDRO-1H-PYRROL-3-YL)METHYL]+METHANESULFONOTHIOATE'>MTN</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2q9e FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2q9e OCA], [https://pdbe.org/2q9e PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2q9e RCSB], [https://www.ebi.ac.uk/pdbsum/2q9e PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2q9e ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/ENLYS_BPT4 ENLYS_BPT4] Endolysin with lysozyme activity that degrades host peptidoglycans and participates with the holin and spanin proteins in the sequential events which lead to the programmed host cell lysis releasing the mature viral particles. Once the holin has permeabilized the host cell membrane, the endolysin can reach the periplasm and break down the peptidoglycan layer.<ref>PMID:22389108</ref> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/q9/2q9e_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2q9e ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Site-directed spin labeling provides a means for exploring structure and dynamics in proteins. To interpret the complex EPR spectra that often arise, it is necessary to characterize the rotamers of the spin-labeled side chain and the interactions they make with the local environment in proteins of known structure. For this purpose, crystal structures have been determined for T4 lysozyme bearing a nitroxide side chain (R1) at the solvent-exposed helical sites 41 and 44 in the B helix. These sites are of particular interest in that the corresponding EPR spectra reveal two dynamic states of R1, one of which is relatively immobilized suggesting interactions of the nitroxide with the environment. The crystal structures together with the effect of mutagenesis of nearest neighbors on the motion of R1 suggest intrahelical interactions of 41R1 with the i + 4 residue and of 44R1 with the i + 1 residue. Such interactions appear to be specific to particular rotamers of the R1 side chain. | |||
Structural determinants of nitroxide motion in spin-labeled proteins: solvent-exposed sites in helix B of T4 lysozyme.,Guo Z, Cascio D, Hideg K, Hubbell WL Protein Sci. 2008 Feb;17(2):228-39. Epub 2007 Dec 20. PMID:18096642<ref>PMID:18096642</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2q9e" style="background-color:#fffaf0;"></div> | |||
== | |||
==See Also== | ==See Also== | ||
*[[ | *[[Lysozyme 3D structures|Lysozyme 3D structures]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
[[Category: | </StructureSection> | ||
[[Category: | [[Category: Escherichia virus T4]] | ||
[[Category: Cascio | [[Category: Large Structures]] | ||
[[Category: Guo | [[Category: Cascio D]] | ||
[[Category: Hideg | [[Category: Guo Z]] | ||
[[Category: Hubbell | [[Category: Hideg K]] | ||
[[Category: Hubbell WL]] | |||
Latest revision as of 11:32, 30 October 2024
Structure of spin-labeled T4 lysozyme mutant S44R1Structure of spin-labeled T4 lysozyme mutant S44R1
Structural highlights
FunctionENLYS_BPT4 Endolysin with lysozyme activity that degrades host peptidoglycans and participates with the holin and spanin proteins in the sequential events which lead to the programmed host cell lysis releasing the mature viral particles. Once the holin has permeabilized the host cell membrane, the endolysin can reach the periplasm and break down the peptidoglycan layer.[1] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedSite-directed spin labeling provides a means for exploring structure and dynamics in proteins. To interpret the complex EPR spectra that often arise, it is necessary to characterize the rotamers of the spin-labeled side chain and the interactions they make with the local environment in proteins of known structure. For this purpose, crystal structures have been determined for T4 lysozyme bearing a nitroxide side chain (R1) at the solvent-exposed helical sites 41 and 44 in the B helix. These sites are of particular interest in that the corresponding EPR spectra reveal two dynamic states of R1, one of which is relatively immobilized suggesting interactions of the nitroxide with the environment. The crystal structures together with the effect of mutagenesis of nearest neighbors on the motion of R1 suggest intrahelical interactions of 41R1 with the i + 4 residue and of 44R1 with the i + 1 residue. Such interactions appear to be specific to particular rotamers of the R1 side chain. Structural determinants of nitroxide motion in spin-labeled proteins: solvent-exposed sites in helix B of T4 lysozyme.,Guo Z, Cascio D, Hideg K, Hubbell WL Protein Sci. 2008 Feb;17(2):228-39. Epub 2007 Dec 20. PMID:18096642[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|