2h5c: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(14 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:2h5c.gif|left|200px]]


{{Structure
==0.82A resolution crystal structure of alpha-lytic protease at pH 5==
|PDB= 2h5c |SIZE=350|CAPTION= <scene name='initialview01'>2h5c</scene>, resolution 0.82&Aring;
<StructureSection load='2h5c' size='340' side='right'caption='[[2h5c]], [[Resolution|resolution]] 0.82&Aring;' scene=''>
|SITE=  
== Structural highlights ==
|LIGAND= <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene> and <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>
<table><tr><td colspan='2'>[[2h5c]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Lysobacter_enzymogenes Lysobacter enzymogenes]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2H5C OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2H5C FirstGlance]. <br>
|ACTIVITY= [http://en.wikipedia.org/wiki/Alpha-lytic_endopeptidase Alpha-lytic endopeptidase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.4.21.12 3.4.21.12]  
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 0.82&#8491;</td></tr>
|GENE=  
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
}}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2h5c FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2h5c OCA], [https://pdbe.org/2h5c PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2h5c RCSB], [https://www.ebi.ac.uk/pdbsum/2h5c PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2h5c ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/PRLA_LYSEN PRLA_LYSEN]
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/h5/2h5c_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2h5c ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
To address questions regarding the mechanism of serine protease catalysis, we have solved two X-ray crystal structures of alpha-lytic protease (alphaLP) that mimic aspects of the transition states: alphaLP at pH 5 (0.82 A resolution) and alphaLP bound to the peptidyl boronic acid inhibitor, MeOSuc-Ala-Ala-Pro-boroVal (0.90 A resolution). Based on these structures, there is no evidence of, or requirement for, histidine-flipping during the acylation step of the reaction. Rather, our data suggests that upon protonation of His57, Ser195 undergoes a conformational change that destabilizes the His57-Ser195 hydrogen bond, preventing the back-reaction. In both structures the His57-Asp102 hydrogen bond in the catalytic triad is a normal ionic hydrogen bond, and not a low-barrier hydrogen bond (LBHB) as previously hypothesized. We propose that the enzyme has evolved a network of relatively short hydrogen bonds that collectively stabilize the transition states. In particular, a short ionic hydrogen bond (SIHB) between His57 Nepsilon2 and the substrate's leaving group may promote forward progression of the TI1-to-acylenzyme reaction. We provide experimental evidence that refutes use of either a short donor-acceptor distance or a downfield 1H chemical shift as sole indicators of a LBHB.


'''0.82A resolution crystal structure of alpha-lytic protease at pH 5'''
Subangstrom crystallography reveals that short ionic hydrogen bonds, and not a His-Asp low-barrier hydrogen bond, stabilize the transition state in serine protease catalysis.,Fuhrmann CN, Daugherty MD, Agard DA J Am Chem Soc. 2006 Jul 19;128(28):9086-102. PMID:16834383<ref>PMID:16834383</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 2h5c" style="background-color:#fffaf0;"></div>


==Overview==
==See Also==
To address questions regarding the mechanism of serine protease catalysis, we have solved two X-ray crystal structures of alpha-lytic protease (alphaLP) that mimic aspects of the transition states: alphaLP at pH 5 (0.82 A resolution) and alphaLP bound to the peptidyl boronic acid inhibitor, MeOSuc-Ala-Ala-Pro-boroVal (0.90 A resolution). Based on these structures, there is no evidence of, or requirement for, histidine-flipping during the acylation step of the reaction. Rather, our data suggests that upon protonation of His57, Ser195 undergoes a conformational change that destabilizes the His57-Ser195 hydrogen bond, preventing the back-reaction. In both structures the His57-Asp102 hydrogen bond in the catalytic triad is a normal ionic hydrogen bond, and not a low-barrier hydrogen bond (LBHB) as previously hypothesized. We propose that the enzyme has evolved a network of relatively short hydrogen bonds that collectively stabilize the transition states. In particular, a short ionic hydrogen bond (SIHB) between His57 Nepsilon2 and the substrate's leaving group may promote forward progression of the TI1-to-acylenzyme reaction. We provide experimental evidence that refutes use of either a short donor-acceptor distance or a downfield 1H chemical shift as sole indicators of a LBHB.
*[[Alpha-lytic protease 3D structures|Alpha-lytic protease 3D structures]]
 
== References ==
==About this Structure==
<references/>
2H5C is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Lysobacter_enzymogenes Lysobacter enzymogenes]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2H5C OCA].
__TOC__
 
</StructureSection>
==Reference==
[[Category: Large Structures]]
Subangstrom crystallography reveals that short ionic hydrogen bonds, and not a His-Asp low-barrier hydrogen bond, stabilize the transition state in serine protease catalysis., Fuhrmann CN, Daugherty MD, Agard DA, J Am Chem Soc. 2006 Jul 19;128(28):9086-102. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/16834383 16834383]
[[Category: Alpha-lytic endopeptidase]]
[[Category: Lysobacter enzymogenes]]
[[Category: Lysobacter enzymogenes]]
[[Category: Single protein]]
[[Category: Agard DA]]
[[Category: Agard, D A.]]
[[Category: Daugherty MD]]
[[Category: Daugherty, M D.]]
[[Category: Fuhrmann CN]]
[[Category: Fuhrmann, C N.]]
[[Category: GOL]]
[[Category: SO4]]
[[Category: a-lytic protease]]
[[Category: acylation transition state]]
[[Category: catalysis]]
[[Category: packing distortion]]
[[Category: protein folding]]
[[Category: protein stability]]
[[Category: serine protease]]
[[Category: ultra-high resolution]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 17:12:54 2008''

Latest revision as of 12:09, 6 November 2024

0.82A resolution crystal structure of alpha-lytic protease at pH 50.82A resolution crystal structure of alpha-lytic protease at pH 5

Structural highlights

2h5c is a 1 chain structure with sequence from Lysobacter enzymogenes. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 0.82Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PRLA_LYSEN

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

To address questions regarding the mechanism of serine protease catalysis, we have solved two X-ray crystal structures of alpha-lytic protease (alphaLP) that mimic aspects of the transition states: alphaLP at pH 5 (0.82 A resolution) and alphaLP bound to the peptidyl boronic acid inhibitor, MeOSuc-Ala-Ala-Pro-boroVal (0.90 A resolution). Based on these structures, there is no evidence of, or requirement for, histidine-flipping during the acylation step of the reaction. Rather, our data suggests that upon protonation of His57, Ser195 undergoes a conformational change that destabilizes the His57-Ser195 hydrogen bond, preventing the back-reaction. In both structures the His57-Asp102 hydrogen bond in the catalytic triad is a normal ionic hydrogen bond, and not a low-barrier hydrogen bond (LBHB) as previously hypothesized. We propose that the enzyme has evolved a network of relatively short hydrogen bonds that collectively stabilize the transition states. In particular, a short ionic hydrogen bond (SIHB) between His57 Nepsilon2 and the substrate's leaving group may promote forward progression of the TI1-to-acylenzyme reaction. We provide experimental evidence that refutes use of either a short donor-acceptor distance or a downfield 1H chemical shift as sole indicators of a LBHB.

Subangstrom crystallography reveals that short ionic hydrogen bonds, and not a His-Asp low-barrier hydrogen bond, stabilize the transition state in serine protease catalysis.,Fuhrmann CN, Daugherty MD, Agard DA J Am Chem Soc. 2006 Jul 19;128(28):9086-102. PMID:16834383[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Fuhrmann CN, Daugherty MD, Agard DA. Subangstrom crystallography reveals that short ionic hydrogen bonds, and not a His-Asp low-barrier hydrogen bond, stabilize the transition state in serine protease catalysis. J Am Chem Soc. 2006 Jul 19;128(28):9086-102. PMID:16834383 doi:http://dx.doi.org/10.1021/ja057721o

2h5c, resolution 0.82Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA