2d8w: Difference between revisions
New page: left|200px<br /><applet load="2d8w" size="450" color="white" frame="true" align="right" spinBox="true" caption="2d8w, resolution 2.00Å" /> '''Structure of HYPER-V... |
No edit summary |
||
(16 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== | ==Structure of HYPER-VIL-trypsin== | ||
New techniques are presented for the preparation of iodine derivatives, involving vapour diffusion of iodine. Firstly, in the vaporizing iodine | <StructureSection load='2d8w' size='340' side='right'caption='[[2d8w]], [[Resolution|resolution]] 2.00Å' scene=''> | ||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2d8w]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Bos_taurus Bos taurus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2D8W OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2D8W FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=IOD:IODIDE+ION'>IOD</scene>, <scene name='pdbligand=IYR:3-IODO-TYROSINE'>IYR</scene>, <scene name='pdbligand=TYI:3,5-DIIODOTYROSINE'>TYI</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2d8w FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2d8w OCA], [https://pdbe.org/2d8w PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2d8w RCSB], [https://www.ebi.ac.uk/pdbsum/2d8w PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2d8w ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/TRY1_BOVIN TRY1_BOVIN] | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/d8/2d8w_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2d8w ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
New techniques are presented for the preparation of iodine derivatives, involving vapour diffusion of iodine. Firstly, in the vaporizing iodine labelling (VIL) technique, a small amount of KI/I(2) solution is enclosed in a crystallization well, with the result that gaseous I(2) molecules diffuse into the crystallization droplets without exerting substantial changes in ionic strength in the target crystals. Once they have diffused into the droplet, the I(2) molecules sometimes iodinate accessible tyrosines at ortho positions. Secondly, when iodination is insufficient, the hydrogen peroxide VIL (HYPER-VIL) technique can be further applied to increase the iodination ratio by the addition of a small droplet of hydrogen peroxide (H(2)O(2)) to the crystallization well; the gaseous H(2)O(2) also diffuses into the crystallization droplet to emphasize the iodination. These techniques are most effective for phase determination when coupled with softer X-rays, such as those from Cu Kalpha or Cr Kalpha radiation. The effectiveness of these techniques was assessed using five different crystals. Four of the crystals were successfully iodinated, providing sufficient phasing power for structure determination. | |||
New methods to prepare iodinated derivatives by vaporizing iodine labelling (VIL) and hydrogen peroxide VIL (HYPER-VIL).,Miyatake H, Hasegawa T, Yamano A Acta Crystallogr D Biol Crystallogr. 2006 Mar;62(Pt 3):280-9. Epub 2006, Feb 22. PMID:16510975<ref>PMID:16510975</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2d8w" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Trypsin 3D structures|Trypsin 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Bos taurus]] | [[Category: Bos taurus]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Hasegawa T]] | |||
[[Category: Hasegawa | [[Category: Miyatake H]] | ||
[[Category: Miyatake | [[Category: Yamano A]] | ||
[[Category: Yamano | |||
Latest revision as of 10:54, 30 October 2024
Structure of HYPER-VIL-trypsinStructure of HYPER-VIL-trypsin
Structural highlights
FunctionEvolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedNew techniques are presented for the preparation of iodine derivatives, involving vapour diffusion of iodine. Firstly, in the vaporizing iodine labelling (VIL) technique, a small amount of KI/I(2) solution is enclosed in a crystallization well, with the result that gaseous I(2) molecules diffuse into the crystallization droplets without exerting substantial changes in ionic strength in the target crystals. Once they have diffused into the droplet, the I(2) molecules sometimes iodinate accessible tyrosines at ortho positions. Secondly, when iodination is insufficient, the hydrogen peroxide VIL (HYPER-VIL) technique can be further applied to increase the iodination ratio by the addition of a small droplet of hydrogen peroxide (H(2)O(2)) to the crystallization well; the gaseous H(2)O(2) also diffuses into the crystallization droplet to emphasize the iodination. These techniques are most effective for phase determination when coupled with softer X-rays, such as those from Cu Kalpha or Cr Kalpha radiation. The effectiveness of these techniques was assessed using five different crystals. Four of the crystals were successfully iodinated, providing sufficient phasing power for structure determination. New methods to prepare iodinated derivatives by vaporizing iodine labelling (VIL) and hydrogen peroxide VIL (HYPER-VIL).,Miyatake H, Hasegawa T, Yamano A Acta Crystallogr D Biol Crystallogr. 2006 Mar;62(Pt 3):280-9. Epub 2006, Feb 22. PMID:16510975[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|