2agx: Difference between revisions
No edit summary |
No edit summary |
||
(13 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Crystal structure of the Schiff base intermediate in the reductive half-reaction of aromatic amine dehydrogenase (AADH) with tryptamine. P212121 form== | |||
<StructureSection load='2agx' size='340' side='right'caption='[[2agx]], [[Resolution|resolution]] 2.20Å' scene=''> | |||
| | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2agx]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Alcaligenes_faecalis Alcaligenes faecalis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2AGX OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2AGX FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.2Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=TRQ:2-AMINO-3-(6,7-DIOXO-6,7-DIHYDRO-1H-INDOL-3-YL)-PROPIONIC+ACID'>TRQ</scene>, <scene name='pdbligand=TSH:2-(1H-INDOL-3-YL)ETHANIMINE'>TSH</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2agx FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2agx OCA], [https://pdbe.org/2agx PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2agx RCSB], [https://www.ebi.ac.uk/pdbsum/2agx PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2agx ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/AAUA_ALCFA AAUA_ALCFA] Oxidizes primary aromatic amines and, more slowly, some long-chain aliphatic amines, but not methylamine or ethylamine. Uses azurin as an electron acceptor to transfer electrons from the reduced tryptophylquinone cofactor.<ref>PMID:11495996</ref> <ref>PMID:16279953</ref> <ref>PMID:8188594</ref> <ref>PMID:7876189</ref> <ref>PMID:17087503</ref> <ref>PMID:17005560</ref> <ref>PMID:16614214</ref> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ag/2agx_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2agx ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
We present an atomic-level description of the reaction chemistry of an enzyme-catalyzed reaction dominated by proton tunneling. By solving structures of reaction intermediates at near-atomic resolution, we have identified the reaction pathway for tryptamine oxidation by aromatic amine dehydrogenase. Combining experiment and computer simulation, we show proton transfer occurs predominantly to oxygen O2 of Asp(128)beta in a reaction dominated by tunneling over approximately 0.6 angstroms. The role of long-range coupled motions in promoting tunneling is controversial. We show that, in this enzyme system, tunneling is promoted by a short-range motion modulating proton-acceptor distance and no long-range coupled motion is required. | |||
Atomic description of an enzyme reaction dominated by proton tunneling.,Masgrau L, Roujeinikova A, Johannissen LO, Hothi P, Basran J, Ranaghan KE, Mulholland AJ, Sutcliffe MJ, Scrutton NS, Leys D Science. 2006 Apr 14;312(5771):237-41. PMID:16614214<ref>PMID:16614214</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2agx" style="background-color:#fffaf0;"></div> | |||
== | ==See Also== | ||
*[[Aromatic amine dehydrogenase 3D structures|Aromatic amine dehydrogenase 3D structures]] | |||
== References == | |||
== | <references/> | ||
__TOC__ | |||
</StructureSection> | |||
[[Category: Alcaligenes faecalis]] | [[Category: Alcaligenes faecalis]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Basran J]] | |||
[[Category: Basran | [[Category: Hothi P]] | ||
[[Category: Hothi | [[Category: Johannissen LO]] | ||
[[Category: Johannissen | [[Category: Leys D]] | ||
[[Category: Leys | [[Category: Masgrau L]] | ||
[[Category: Masgrau | [[Category: Mulholland AJ]] | ||
[[Category: Mulholland | [[Category: Ranaghan KE]] | ||
[[Category: Ranaghan | [[Category: Roujeinikova A]] | ||
[[Category: Roujeinikova | [[Category: Scrutton NS]] | ||
[[Category: Scrutton | [[Category: Sutcliffe MJ]] | ||
[[Category: Sutcliffe | |||
Latest revision as of 12:43, 25 December 2024
Crystal structure of the Schiff base intermediate in the reductive half-reaction of aromatic amine dehydrogenase (AADH) with tryptamine. P212121 formCrystal structure of the Schiff base intermediate in the reductive half-reaction of aromatic amine dehydrogenase (AADH) with tryptamine. P212121 form
Structural highlights
FunctionAAUA_ALCFA Oxidizes primary aromatic amines and, more slowly, some long-chain aliphatic amines, but not methylamine or ethylamine. Uses azurin as an electron acceptor to transfer electrons from the reduced tryptophylquinone cofactor.[1] [2] [3] [4] [5] [6] [7] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedWe present an atomic-level description of the reaction chemistry of an enzyme-catalyzed reaction dominated by proton tunneling. By solving structures of reaction intermediates at near-atomic resolution, we have identified the reaction pathway for tryptamine oxidation by aromatic amine dehydrogenase. Combining experiment and computer simulation, we show proton transfer occurs predominantly to oxygen O2 of Asp(128)beta in a reaction dominated by tunneling over approximately 0.6 angstroms. The role of long-range coupled motions in promoting tunneling is controversial. We show that, in this enzyme system, tunneling is promoted by a short-range motion modulating proton-acceptor distance and no long-range coupled motion is required. Atomic description of an enzyme reaction dominated by proton tunneling.,Masgrau L, Roujeinikova A, Johannissen LO, Hothi P, Basran J, Ranaghan KE, Mulholland AJ, Sutcliffe MJ, Scrutton NS, Leys D Science. 2006 Apr 14;312(5771):237-41. PMID:16614214[8] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|