2a7c: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(14 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:2a7c.gif|left|200px]]


{{Structure
==On the Routine Use of Soft X-Rays in Macromolecular Crystallography, Part III- The Optimal Data Collection Wavelength==
|PDB= 2a7c |SIZE=350|CAPTION= <scene name='initialview01'>2a7c</scene>, resolution 1.65&Aring;
<StructureSection load='2a7c' size='340' side='right'caption='[[2a7c]], [[Resolution|resolution]] 1.65&Aring;' scene=''>
|SITE=  
== Structural highlights ==
|LIGAND= <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=XE:XENON'>XE</scene> and <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>
<table><tr><td colspan='2'>[[2a7c]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Sus_scrofa Sus scrofa]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2A7C OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2A7C FirstGlance]. <br>
|ACTIVITY= [http://en.wikipedia.org/wiki/Pancreatic_elastase Pancreatic elastase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.4.21.36 3.4.21.36]  
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.65&#8491;</td></tr>
|GENE=  
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=XE:XENON'>XE</scene></td></tr>
}}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2a7c FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2a7c OCA], [https://pdbe.org/2a7c PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2a7c RCSB], [https://www.ebi.ac.uk/pdbsum/2a7c PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2a7c ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/CELA1_PIG CELA1_PIG] Acts upon elastin.
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/a7/2a7c_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2a7c ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Complete and highly redundant data sets were collected at different wavelengths between 0.80 and 2.65 A for a total of ten different protein and DNA model systems. The magnitude of the anomalous signal-to-noise ratio as assessed by the quotient R(anom)/R(r.i.m.) was found to be influenced by the data-collection wavelength and the nature of the anomalously scattering substructure. By utilizing simple empirical correlations, for instance between the estimated deltaF/F and the expected R(anom) or the data-collection wavelength and the expected R(r.i.m.), the wavelength at which the highest anomalous signal-to-noise ratio can be expected could be estimated even before the experiment. Almost independent of the nature of the anomalously scattering substructure and provided that no elemental X-ray absorption edge is nearby, this optimal wavelength is 2.1 A.


'''On the Routine Use of Soft X-Rays in Macromolecular Crystallography, Part III- The Optimal Data Collection Wavelength'''
On the routine use of soft X-rays in macromolecular crystallography. Part III. The optimal data-collection wavelength.,Mueller-Dieckmann C, Panjikar S, Tucker PA, Weiss MS Acta Crystallogr D Biol Crystallogr. 2005 Sep;61(Pt 9):1263-72. Epub 2005, Aug 16. PMID:16131760<ref>PMID:16131760</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 2a7c" style="background-color:#fffaf0;"></div>


==Overview==
==See Also==
Complete and highly redundant data sets were collected at different wavelengths between 0.80 and 2.65 A for a total of ten different protein and DNA model systems. The magnitude of the anomalous signal-to-noise ratio as assessed by the quotient R(anom)/R(r.i.m.) was found to be influenced by the data-collection wavelength and the nature of the anomalously scattering substructure. By utilizing simple empirical correlations, for instance between the estimated deltaF/F and the expected R(anom) or the data-collection wavelength and the expected R(r.i.m.), the wavelength at which the highest anomalous signal-to-noise ratio can be expected could be estimated even before the experiment. Almost independent of the nature of the anomalously scattering substructure and provided that no elemental X-ray absorption edge is nearby, this optimal wavelength is 2.1 A.
*[[Elastase 3D structures|Elastase 3D structures]]
 
== References ==
==About this Structure==
<references/>
2A7C is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Sus_scrofa Sus scrofa]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2A7C OCA].
__TOC__
 
</StructureSection>
==Reference==
[[Category: Large Structures]]
On the routine use of soft X-rays in macromolecular crystallography. Part III. The optimal data-collection wavelength., Mueller-Dieckmann C, Panjikar S, Tucker PA, Weiss MS, Acta Crystallogr D Biol Crystallogr. 2005 Sep;61(Pt 9):1263-72. Epub 2005, Aug 16. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/16131760 16131760]
[[Category: Pancreatic elastase]]
[[Category: Single protein]]
[[Category: Sus scrofa]]
[[Category: Sus scrofa]]
[[Category: Mueller-Dieckmann, C.]]
[[Category: Mueller-Dieckmann C]]
[[Category: Panjikar, S.]]
[[Category: Panjikar S]]
[[Category: Tucker, P A.]]
[[Category: Tucker PA]]
[[Category: Weiss, M S.]]
[[Category: Weiss MS]]
[[Category: GOL]]
[[Category: SO4]]
[[Category: XE]]
[[Category: hydrolase]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 15:46:18 2008''

Latest revision as of 11:59, 6 November 2024

On the Routine Use of Soft X-Rays in Macromolecular Crystallography, Part III- The Optimal Data Collection WavelengthOn the Routine Use of Soft X-Rays in Macromolecular Crystallography, Part III- The Optimal Data Collection Wavelength

Structural highlights

2a7c is a 1 chain structure with sequence from Sus scrofa. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.65Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

CELA1_PIG Acts upon elastin.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Complete and highly redundant data sets were collected at different wavelengths between 0.80 and 2.65 A for a total of ten different protein and DNA model systems. The magnitude of the anomalous signal-to-noise ratio as assessed by the quotient R(anom)/R(r.i.m.) was found to be influenced by the data-collection wavelength and the nature of the anomalously scattering substructure. By utilizing simple empirical correlations, for instance between the estimated deltaF/F and the expected R(anom) or the data-collection wavelength and the expected R(r.i.m.), the wavelength at which the highest anomalous signal-to-noise ratio can be expected could be estimated even before the experiment. Almost independent of the nature of the anomalously scattering substructure and provided that no elemental X-ray absorption edge is nearby, this optimal wavelength is 2.1 A.

On the routine use of soft X-rays in macromolecular crystallography. Part III. The optimal data-collection wavelength.,Mueller-Dieckmann C, Panjikar S, Tucker PA, Weiss MS Acta Crystallogr D Biol Crystallogr. 2005 Sep;61(Pt 9):1263-72. Epub 2005, Aug 16. PMID:16131760[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Mueller-Dieckmann C, Panjikar S, Tucker PA, Weiss MS. On the routine use of soft X-rays in macromolecular crystallography. Part III. The optimal data-collection wavelength. Acta Crystallogr D Biol Crystallogr. 2005 Sep;61(Pt 9):1263-72. Epub 2005, Aug 16. PMID:16131760 doi:http://dx.doi.org/10.1107/S0907444905021475

2a7c, resolution 1.65Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA