1yzp: Difference between revisions
No edit summary |
No edit summary |
||
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Substrate-free manganese peroxidase== | ==Substrate-free manganese peroxidase== | ||
<StructureSection load='1yzp' size='340' side='right' caption='[[1yzp]], [[Resolution|resolution]] 1.60Å' scene=''> | <StructureSection load='1yzp' size='340' side='right'caption='[[1yzp]], [[Resolution|resolution]] 1.60Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1yzp]] is a 1 chain structure with sequence from [ | <table><tr><td colspan='2'>[[1yzp]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Phanerodontia_chrysosporium Phanerodontia chrysosporium]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1YZP OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1YZP FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.6Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1yzp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1yzp OCA], [https://pdbe.org/1yzp PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1yzp RCSB], [https://www.ebi.ac.uk/pdbsum/1yzp PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1yzp ProSAT]</span></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | |||
</table> | </table> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/PEM1_PHACH PEM1_PHACH] Catalyzes the oxidation of Mn(2+) to Mn(3+). The latter, acting as a diffusible redox mediator, is capable of oxidizing a variety of lignin compounds. | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Check<jmol> | Check<jmol> | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/yz/1yzp_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/yz/1yzp_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1yzp ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
Line 28: | Line 28: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | </div> | ||
<div class="pdbe-citations 1yzp" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== | ||
Line 35: | Line 36: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: | [[Category: Phanerodontia chrysosporium]] | ||
[[Category: Gold | [[Category: Gold MH]] | ||
[[Category: Poulos | [[Category: Poulos TL]] | ||
[[Category: Sundaramoorthy | [[Category: Sundaramoorthy M]] | ||
[[Category: Youngs | [[Category: Youngs HL]] | ||
Latest revision as of 03:43, 21 November 2024
Substrate-free manganese peroxidaseSubstrate-free manganese peroxidase
Structural highlights
FunctionPEM1_PHACH Catalyzes the oxidation of Mn(2+) to Mn(3+). The latter, acting as a diffusible redox mediator, is capable of oxidizing a variety of lignin compounds. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedManganese peroxidase (MnP) is an extracellular heme enzyme that catalyzes the peroxide-dependent oxidation of Mn(II) to Mn(III). The Mn(III) is released from the enzyme in complex with oxalate. One heme propionate and the side chains of Glu35, Glu39, and Asp179 were identified as Mn(II) ligands in the 2.0 A resolution crystal structure. The new 1.45 A crystal structure of MnP complexed with Mn(II) provides a more accurate view of the Mn-binding site. New features include possible partial protonation of Glu39 in the Mn-binding site and glycosylation at Ser336. This is also the first report of MnP-inhibitor complex structures. At the Mn-binding site, divalent Cd(II) exhibits octahedral, hexacoordinate ligation geometry similar to that of Mn(II). Cd(II) also binds to a putative second weak metal-binding site with tetrahedral geometry at the C-terminus of the protein. Unlike that for Mn(II) and Cd(II), coordination of trivalent Sm(III) at the Mn-binding site is octacoordinate. Sm(III) was removed from a MnP-Sm(III) crystal by soaking the crystal in oxalate and then reintroduced into the binding site. Thus, direct comparisons of Sm(III)-bound and metal-free structures were made using the same crystal. No ternary complex was observed upon incubation with oxalate. The reversible binding of Sm(III) may be a useful model for the reversible binding of Mn(III) to the enzyme, which is too unstable to allow similar examination. High-resolution crystal structure of manganese peroxidase: substrate and inhibitor complexes.,Sundaramoorthy M, Youngs HL, Gold MH, Poulos TL Biochemistry. 2005 May 3;44(17):6463-70. PMID:15850380[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|