1xu6: Difference between revisions
No edit summary |
No edit summary |
||
(13 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Structure of the C-terminal domain from Trypanosoma brucei Variant Surface Glycoprotein MITat1.2== | |||
<StructureSection load='1xu6' size='340' side='right'caption='[[1xu6]]' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1xu6]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Trypanosoma_brucei_brucei Trypanosoma brucei brucei]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1XU6 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1XU6 FirstGlance]. <br> | |||
| | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR, 60 models</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1xu6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1xu6 OCA], [https://pdbe.org/1xu6 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1xu6 RCSB], [https://www.ebi.ac.uk/pdbsum/1xu6 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1xu6 ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/VSM2_TRYBB VSM2_TRYBB] VSG forms a coat on the surface of the parasite. The trypanosome evades the immune response of the host by expressing a series of antigenically distinct VSGs from an estimated 1000 VSG genes. | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/xu/1xu6_consurf.spt"</scriptWhenChecked> | |||
== | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1xu6 ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The variant surface glycoprotein (VSG) of African trypanosomes has a structural role in protecting other cell surface proteins from effector molecules of the mammalian immune system and also undergoes antigenic variation necessary for a persistent infection in a host. Here we have reported the solution structure of a VSG type 2 C-terminal domain from MITat1.2, completing the first structure of both domains of a VSG. The isolated C-terminal domain is a monomer in solution and forms a novel fold, which commences with a short alpha-helix followed by a single turn of 3(10)-helix and connected by a short loop to a small anti-parallel beta-sheet and then a longer alpha-helix at the C terminus. This compact domain is flanked by two unstructured regions. The structured part of the domain contains 42 residues, and the core comprises 2 disulfide bonds and 2 hydrophobic residues. These cysteines and hydrophobic residues are conserved in other VSGs, and we have modeled the structures of two further VSG C-terminal domains using the structure of MITat1.2. The models suggest that the overall structure of the core is conserved in the different VSGs but that the C-terminal alpha-helix is of variable length and depends on the presence of charged residues. The results provided evidence for a conserved tertiary structure for all the type 2 VSG C-terminal domains, indicated that VSG dimers form through interactions between N-terminal domains, and showed that the selection pressure for sequence variation within a conserved tertiary structure acts on the whole of the VSG molecule. | The variant surface glycoprotein (VSG) of African trypanosomes has a structural role in protecting other cell surface proteins from effector molecules of the mammalian immune system and also undergoes antigenic variation necessary for a persistent infection in a host. Here we have reported the solution structure of a VSG type 2 C-terminal domain from MITat1.2, completing the first structure of both domains of a VSG. The isolated C-terminal domain is a monomer in solution and forms a novel fold, which commences with a short alpha-helix followed by a single turn of 3(10)-helix and connected by a short loop to a small anti-parallel beta-sheet and then a longer alpha-helix at the C terminus. This compact domain is flanked by two unstructured regions. The structured part of the domain contains 42 residues, and the core comprises 2 disulfide bonds and 2 hydrophobic residues. These cysteines and hydrophobic residues are conserved in other VSGs, and we have modeled the structures of two further VSG C-terminal domains using the structure of MITat1.2. The models suggest that the overall structure of the core is conserved in the different VSGs but that the C-terminal alpha-helix is of variable length and depends on the presence of charged residues. The results provided evidence for a conserved tertiary structure for all the type 2 VSG C-terminal domains, indicated that VSG dimers form through interactions between N-terminal domains, and showed that the selection pressure for sequence variation within a conserved tertiary structure acts on the whole of the VSG molecule. | ||
Structure of the C-terminal domain from Trypanosoma brucei variant surface glycoprotein MITat1.2.,Chattopadhyay A, Jones NG, Nietlispach D, Nielsen PR, Voorheis HP, Mott HR, Carrington M J Biol Chem. 2005 Feb 25;280(8):7228-35. Epub 2004 Nov 22. PMID:15557330<ref>PMID:15557330</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
[[Category: | <div class="pdbe-citations 1xu6" style="background-color:#fffaf0;"></div> | ||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Large Structures]] | |||
[[Category: Trypanosoma brucei brucei]] | [[Category: Trypanosoma brucei brucei]] | ||
[[Category: Carrington | [[Category: Carrington M]] | ||
[[Category: Chattopadhyay | [[Category: Chattopadhyay A]] | ||
[[Category: Jones | [[Category: Jones NG]] | ||
[[Category: Mott | [[Category: Mott HR]] | ||
[[Category: Nielsen | [[Category: Nielsen PR]] | ||
[[Category: Nietlispach | [[Category: Nietlispach D]] | ||
[[Category: Voorheis | [[Category: Voorheis HP]] | ||
Latest revision as of 10:39, 30 October 2024
Structure of the C-terminal domain from Trypanosoma brucei Variant Surface Glycoprotein MITat1.2Structure of the C-terminal domain from Trypanosoma brucei Variant Surface Glycoprotein MITat1.2
Structural highlights
FunctionVSM2_TRYBB VSG forms a coat on the surface of the parasite. The trypanosome evades the immune response of the host by expressing a series of antigenically distinct VSGs from an estimated 1000 VSG genes. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe variant surface glycoprotein (VSG) of African trypanosomes has a structural role in protecting other cell surface proteins from effector molecules of the mammalian immune system and also undergoes antigenic variation necessary for a persistent infection in a host. Here we have reported the solution structure of a VSG type 2 C-terminal domain from MITat1.2, completing the first structure of both domains of a VSG. The isolated C-terminal domain is a monomer in solution and forms a novel fold, which commences with a short alpha-helix followed by a single turn of 3(10)-helix and connected by a short loop to a small anti-parallel beta-sheet and then a longer alpha-helix at the C terminus. This compact domain is flanked by two unstructured regions. The structured part of the domain contains 42 residues, and the core comprises 2 disulfide bonds and 2 hydrophobic residues. These cysteines and hydrophobic residues are conserved in other VSGs, and we have modeled the structures of two further VSG C-terminal domains using the structure of MITat1.2. The models suggest that the overall structure of the core is conserved in the different VSGs but that the C-terminal alpha-helix is of variable length and depends on the presence of charged residues. The results provided evidence for a conserved tertiary structure for all the type 2 VSG C-terminal domains, indicated that VSG dimers form through interactions between N-terminal domains, and showed that the selection pressure for sequence variation within a conserved tertiary structure acts on the whole of the VSG molecule. Structure of the C-terminal domain from Trypanosoma brucei variant surface glycoprotein MITat1.2.,Chattopadhyay A, Jones NG, Nietlispach D, Nielsen PR, Voorheis HP, Mott HR, Carrington M J Biol Chem. 2005 Feb 25;280(8):7228-35. Epub 2004 Nov 22. PMID:15557330[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|