1sf8: Difference between revisions
No edit summary |
No edit summary |
||
(16 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== | ==Crystal structure of the carboxy-terminal domain of htpG, the E. coli Hsp90== | ||
<StructureSection load='1sf8' size='340' side='right'caption='[[1sf8]], [[Resolution|resolution]] 2.60Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1sf8]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1SF8 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1SF8 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.6Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene>, <scene name='pdbligand=NI:NICKEL+(II)+ION'>NI</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1sf8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1sf8 OCA], [https://pdbe.org/1sf8 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1sf8 RCSB], [https://www.ebi.ac.uk/pdbsum/1sf8 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1sf8 ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/HTPG_ECOLI HTPG_ECOLI] Molecular chaperone. Has ATPase activity.[HAMAP-Rule:MF_00505] | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/sf/1sf8_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1sf8 ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Hsp90 is a ubiquitous, well-conserved molecular chaperone involved in the folding and stabilization of diverse proteins. Beyond its capacity for general protein folding, Hsp90 influences a wide array of cellular signaling pathways that underlie key biological and disease processes. It has been proposed that Hsp90 functions as a molecular clamp, dimerizing through its carboxy-terminal domain and utilizing ATP binding and hydrolysis to drive large conformational changes including transient dimerization of the amino-terminal and middle domains. We have determined the 2.6 A X-ray crystal structure of the carboxy-terminal domain of htpG, the Escherichia coli Hsp90. This structure reveals a novel fold and that dimerization is dependent upon the formation of a four-helix bundle. Remarkably, proximal to the helical dimerization motif, each monomer projects a short helix into solvent. The location, flexibility, and amphipathic character of this helix suggests that it may play a role in substrate binding and hence chaperone activity. | Hsp90 is a ubiquitous, well-conserved molecular chaperone involved in the folding and stabilization of diverse proteins. Beyond its capacity for general protein folding, Hsp90 influences a wide array of cellular signaling pathways that underlie key biological and disease processes. It has been proposed that Hsp90 functions as a molecular clamp, dimerizing through its carboxy-terminal domain and utilizing ATP binding and hydrolysis to drive large conformational changes including transient dimerization of the amino-terminal and middle domains. We have determined the 2.6 A X-ray crystal structure of the carboxy-terminal domain of htpG, the Escherichia coli Hsp90. This structure reveals a novel fold and that dimerization is dependent upon the formation of a four-helix bundle. Remarkably, proximal to the helical dimerization motif, each monomer projects a short helix into solvent. The location, flexibility, and amphipathic character of this helix suggests that it may play a role in substrate binding and hence chaperone activity. | ||
The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site.,Harris SF, Shiau AK, Agard DA Structure. 2004 Jun;12(6):1087-97. PMID:15274928<ref>PMID:15274928</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 1sf8" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Heat Shock Protein structures|Heat Shock Protein structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Escherichia coli]] | [[Category: Escherichia coli]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Agard | [[Category: Agard DA]] | ||
[[Category: Harris | [[Category: Harris SF]] | ||
[[Category: Shiau | [[Category: Shiau AK]] | ||
Latest revision as of 10:23, 30 October 2024
Crystal structure of the carboxy-terminal domain of htpG, the E. coli Hsp90Crystal structure of the carboxy-terminal domain of htpG, the E. coli Hsp90
Structural highlights
FunctionHTPG_ECOLI Molecular chaperone. Has ATPase activity.[HAMAP-Rule:MF_00505] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedHsp90 is a ubiquitous, well-conserved molecular chaperone involved in the folding and stabilization of diverse proteins. Beyond its capacity for general protein folding, Hsp90 influences a wide array of cellular signaling pathways that underlie key biological and disease processes. It has been proposed that Hsp90 functions as a molecular clamp, dimerizing through its carboxy-terminal domain and utilizing ATP binding and hydrolysis to drive large conformational changes including transient dimerization of the amino-terminal and middle domains. We have determined the 2.6 A X-ray crystal structure of the carboxy-terminal domain of htpG, the Escherichia coli Hsp90. This structure reveals a novel fold and that dimerization is dependent upon the formation of a four-helix bundle. Remarkably, proximal to the helical dimerization motif, each monomer projects a short helix into solvent. The location, flexibility, and amphipathic character of this helix suggests that it may play a role in substrate binding and hence chaperone activity. The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site.,Harris SF, Shiau AK, Agard DA Structure. 2004 Jun;12(6):1087-97. PMID:15274928[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|