1rds: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(12 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1rds.gif|left|200px]]
<!--
The line below this paragraph, containing "STRUCTURE_1rds", creates the "Structure Box" on the page.
You may change the PDB parameter (which sets the PDB file loaded into the applet)
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
or leave the SCENE parameter empty for the default display.
-->
{{STRUCTURE_1rds|  PDB=1rds  |  SCENE=  }}
'''CRYSTAL STRUCTURE OF RIBONUCLEASE MS (AS RIBONUCLEASE T1 HOMOLOGUE) COMPLEXED WITH A GUANYLYL-3',5'-CYTIDINE ANALOGUE'''


==CRYSTAL STRUCTURE OF RIBONUCLEASE MS (AS RIBONUCLEASE T1 HOMOLOGUE) COMPLEXED WITH A GUANYLYL-3',5'-CYTIDINE ANALOGUE==
<StructureSection load='1rds' size='340' side='right'caption='[[1rds]], [[Resolution|resolution]] 1.80&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[1rds]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Aspergillus_phoenicis Aspergillus phoenicis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1RDS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1RDS FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.8&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GPC:2-FLUOROGUANYLYL-(3-5)-PHOSPHOCYTIDINE'>GPC</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1rds FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1rds OCA], [https://pdbe.org/1rds PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1rds RCSB], [https://www.ebi.ac.uk/pdbsum/1rds PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1rds ProSAT]</span></td></tr>
</table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/rd/1rds_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1rds ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
A ribonuclease T1 homologue, ribonuclease Ms (RNase Ms) from Aspergillus saitoi, has been crystallized as a complex with a substrate analogue GfpC where the 2'-hydroxyl (2'-OH) group of guanosine in guanylyl-3',5'-cytidine (GpC) is replaced by the 2'-fluorine (2'-F) atom to prevent transesterification. The crystal structure of the complex was solved at 1.8-A resolution to a final R-factor of 0.204. The role of His92 (RNase T1 numbering) as the general acid catalyst was confirmed. Of the two alternative candidates for a general base to abstract a proton from the 2'-OH group, His40 and Glu58 were found close to the 2'-F atom, making the decision between the two groups difficult. We then superposed the active site of the RNase Ms/GfpC complex with that of pancreatic ribonuclease S (RNase S) complexed with a substrate analogue UpcA, a phosphonate analogue of uridylyl-3',5'-adenosine (UpA), and found that His12 and His119 of RNase A almost exactly coincided with Glu58 and His92, respectively, of RNase Ms. Similar superposition with a prokaryotic microbial ribonuclease, RNase St [Nakamura, K. T., Iwahashi, K., Yamamoto, Y., Iitaka, Y., Yoshida, N., &amp; Mitsui, Y. (1982) Nature 299, 564-566], also indicated Glu58 as a general base. Thus the present comparative geometrical studies consistently favor, albeit indirectly, the traditional as well as the most recent notion [Steyaert, J., Hallenga, K., Wyns, L., &amp; Stanssens, P. (1990) Biochemistry 29, 9064-9072] that Glu58, rather than His40, must be the general base catalyst in the intact enzymes of the RNase T1 family.


==Overview==
Crystal structure of ribonuclease Ms (as a ribonuclease T1 homologue) complexed with a guanylyl-3',5'-cytidine analogue.,Nonaka T, Nakamura KT, Uesugi S, Ikehara M, Irie M, Mitsui Y Biochemistry. 1993 Nov 9;32(44):11825-37. PMID:8218254<ref>PMID:8218254</ref>
A ribonuclease T1 homologue, ribonuclease Ms (RNase Ms) from Aspergillus saitoi, has been crystallized as a complex with a substrate analogue GfpC where the 2'-hydroxyl (2'-OH) group of guanosine in guanylyl-3',5'-cytidine (GpC) is replaced by the 2'-fluorine (2'-F) atom to prevent transesterification. The crystal structure of the complex was solved at 1.8-A resolution to a final R-factor of 0.204. The role of His92 (RNase T1 numbering) as the general acid catalyst was confirmed. Of the two alternative candidates for a general base to abstract a proton from the 2'-OH group, His40 and Glu58 were found close to the 2'-F atom, making the decision between the two groups difficult. We then superposed the active site of the RNase Ms/GfpC complex with that of pancreatic ribonuclease S (RNase S) complexed with a substrate analogue UpcA, a phosphonate analogue of uridylyl-3',5'-adenosine (UpA), and found that His12 and His119 of RNase A almost exactly coincided with Glu58 and His92, respectively, of RNase Ms. Similar superposition with a prokaryotic microbial ribonuclease, RNase St [Nakamura, K. T., Iwahashi, K., Yamamoto, Y., Iitaka, Y., Yoshida, N., &amp; Mitsui, Y. (1982) Nature 299, 564-566], also indicated Glu58 as a general base. Thus the present comparative geometrical studies consistently favor, albeit indirectly, the traditional as well as the most recent notion [Steyaert, J., Hallenga, K., Wyns, L., &amp; Stanssens, P. (1990) Biochemistry 29, 9064-9072] that Glu58, rather than His40, must be the general base catalyst in the intact enzymes of the RNase T1 family.


==About this Structure==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
1RDS is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Aspergillus_phoenicis Aspergillus phoenicis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1RDS OCA].
</div>
<div class="pdbe-citations 1rds" style="background-color:#fffaf0;"></div>


==Reference==
==See Also==
Crystal structure of ribonuclease Ms (as a ribonuclease T1 homologue) complexed with a guanylyl-3',5'-cytidine analogue., Nonaka T, Nakamura KT, Uesugi S, Ikehara M, Irie M, Mitsui Y, Biochemistry. 1993 Nov 9;32(44):11825-37. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/8218254 8218254]
*[[Ribonuclease 3D structures|Ribonuclease 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Aspergillus phoenicis]]
[[Category: Aspergillus phoenicis]]
[[Category: Single protein]]
[[Category: Large Structures]]
[[Category: Mitsui, Y.]]
[[Category: Mitsui Y]]
[[Category: Nakamura, K T.]]
[[Category: Nakamura KT]]
[[Category: Nonaka, T.]]
[[Category: Nonaka T]]
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sat May  3 07:22:21 2008''

Latest revision as of 03:26, 21 November 2024

CRYSTAL STRUCTURE OF RIBONUCLEASE MS (AS RIBONUCLEASE T1 HOMOLOGUE) COMPLEXED WITH A GUANYLYL-3',5'-CYTIDINE ANALOGUECRYSTAL STRUCTURE OF RIBONUCLEASE MS (AS RIBONUCLEASE T1 HOMOLOGUE) COMPLEXED WITH A GUANYLYL-3',5'-CYTIDINE ANALOGUE

Structural highlights

1rds is a 1 chain structure with sequence from Aspergillus phoenicis. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.8Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

A ribonuclease T1 homologue, ribonuclease Ms (RNase Ms) from Aspergillus saitoi, has been crystallized as a complex with a substrate analogue GfpC where the 2'-hydroxyl (2'-OH) group of guanosine in guanylyl-3',5'-cytidine (GpC) is replaced by the 2'-fluorine (2'-F) atom to prevent transesterification. The crystal structure of the complex was solved at 1.8-A resolution to a final R-factor of 0.204. The role of His92 (RNase T1 numbering) as the general acid catalyst was confirmed. Of the two alternative candidates for a general base to abstract a proton from the 2'-OH group, His40 and Glu58 were found close to the 2'-F atom, making the decision between the two groups difficult. We then superposed the active site of the RNase Ms/GfpC complex with that of pancreatic ribonuclease S (RNase S) complexed with a substrate analogue UpcA, a phosphonate analogue of uridylyl-3',5'-adenosine (UpA), and found that His12 and His119 of RNase A almost exactly coincided with Glu58 and His92, respectively, of RNase Ms. Similar superposition with a prokaryotic microbial ribonuclease, RNase St [Nakamura, K. T., Iwahashi, K., Yamamoto, Y., Iitaka, Y., Yoshida, N., & Mitsui, Y. (1982) Nature 299, 564-566], also indicated Glu58 as a general base. Thus the present comparative geometrical studies consistently favor, albeit indirectly, the traditional as well as the most recent notion [Steyaert, J., Hallenga, K., Wyns, L., & Stanssens, P. (1990) Biochemistry 29, 9064-9072] that Glu58, rather than His40, must be the general base catalyst in the intact enzymes of the RNase T1 family.

Crystal structure of ribonuclease Ms (as a ribonuclease T1 homologue) complexed with a guanylyl-3',5'-cytidine analogue.,Nonaka T, Nakamura KT, Uesugi S, Ikehara M, Irie M, Mitsui Y Biochemistry. 1993 Nov 9;32(44):11825-37. PMID:8218254[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Nonaka T, Nakamura KT, Uesugi S, Ikehara M, Irie M, Mitsui Y. Crystal structure of ribonuclease Ms (as a ribonuclease T1 homologue) complexed with a guanylyl-3',5'-cytidine analogue. Biochemistry. 1993 Nov 9;32(44):11825-37. PMID:8218254

1rds, resolution 1.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA