1nek: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(13 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1nek.gif|left|200px]]


{{Structure
==Complex II (Succinate Dehydrogenase) From E. Coli with ubiquinone bound==
|PDB= 1nek |SIZE=350|CAPTION= <scene name='initialview01'>1nek</scene>, resolution 2.60&Aring;
<StructureSection load='1nek' size='340' side='right'caption='[[1nek]], [[Resolution|resolution]] 2.60&Aring;' scene=''>
|SITE=  
== Structural highlights ==
|LIGAND= <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CDN:CARDIOLIPIN'>CDN</scene>, <scene name='pdbligand=EPH:L-ALPHA-PHOSPHATIDYL-BETA-OLEOYL-GAMMA-PALMITOYL-PHOSPHATIDYLETHANOLAMINE'>EPH</scene>, <scene name='pdbligand=F3S:FE3-S4+CLUSTER'>F3S</scene>, <scene name='pdbligand=FAD:FLAVIN-ADENINE+DINUCLEOTIDE'>FAD</scene>, <scene name='pdbligand=FES:FE2/S2+(INORGANIC)+CLUSTER'>FES</scene>, <scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene>, <scene name='pdbligand=OAA:OXALOACETATE+ION'>OAA</scene>, <scene name='pdbligand=SF4:IRON/SULFUR+CLUSTER'>SF4</scene>, <scene name='pdbligand=UQ2:UBIQUINONE-2'>UQ2</scene>
<table><tr><td colspan='2'>[[1nek]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. The October 2012 RCSB PDB [https://pdb.rcsb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/index.html Molecule of the Month] feature on ''Citric Acid Cycle''  by David Goodsell is [https://dx.doi.org/10.2210/rcsb_pdb/mom_2012_10 10.2210/rcsb_pdb/mom_2012_10]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1NEK OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1NEK FirstGlance]. <br>
|ACTIVITY=  
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.6&#8491;</td></tr>
|GENE= SDHA OR B0723 OR Z0877 OR ECS0748 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 Escherichia coli]), SDHB OR B0724 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 Escherichia coli]), SDHC OR CYBA OR B0721 OR Z0875 OR ECS0746 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 Escherichia coli]), SDHD OR B0722 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 Escherichia coli])
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CDN:CARDIOLIPIN'>CDN</scene>, <scene name='pdbligand=EPH:L-ALPHA-PHOSPHATIDYL-BETA-OLEOYL-GAMMA-PALMITOYL-PHOSPHATIDYLETHANOLAMINE'>EPH</scene>, <scene name='pdbligand=FAD:FLAVIN-ADENINE+DINUCLEOTIDE'>FAD</scene>, <scene name='pdbligand=FES:FE2/S2+(INORGANIC)+CLUSTER'>FES</scene>, <scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene>, <scene name='pdbligand=OAA:OXALOACETATE+ION'>OAA</scene>, <scene name='pdbligand=UQ2:UBIQUINONE-2'>UQ2</scene></td></tr>
|DOMAIN=
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1nek FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1nek OCA], [https://pdbe.org/1nek PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1nek RCSB], [https://www.ebi.ac.uk/pdbsum/1nek PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1nek ProSAT]</span></td></tr>
|RELATEDENTRY=[[1nen|1NEN]]
</table>
|RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1nek FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1nek OCA], [http://www.ebi.ac.uk/pdbsum/1nek PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=1nek RCSB]</span>
== Function ==
}}
[https://www.uniprot.org/uniprot/SDHA_ECOLI SDHA_ECOLI] Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth.<ref>PMID:24374335</ref> <ref>PMID:12560550</ref> <ref>PMID:16407191</ref> <ref>PMID:19710024</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ne/1nek_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1nek ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The structure of Escherichia coli succinate dehydrogenase (SQR), analogous to the mitochondrial respiratory complex II, has been determined, revealing the electron transport pathway from the electron donor, succinate, to the terminal electron acceptor, ubiquinone. It was found that the SQR redox centers are arranged in a manner that aids the prevention of reactive oxygen species (ROS) formation at the flavin adenine dinucleotide. This is likely to be the main reason SQR is expressed during aerobic respiration rather than the related enzyme fumarate reductase, which produces high levels of ROS. Furthermore, symptoms of genetic disorders associated with mitochondrial SQR mutations may be a result of ROS formation resulting from impaired electron transport in the enzyme.


'''Complex II (Succinate Dehydrogenase) From E. Coli with ubiquinone bound'''
Architecture of succinate dehydrogenase and reactive oxygen species generation.,Yankovskaya V, Horsefield R, Tornroth S, Luna-Chavez C, Miyoshi H, Leger C, Byrne B, Cecchini G, Iwata S Science. 2003 Jan 31;299(5607):700-4. PMID:12560550<ref>PMID:12560550</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1nek" style="background-color:#fffaf0;"></div>


==Overview==
==See Also==
The structure of Escherichia coli succinate dehydrogenase (SQR), analogous to the mitochondrial respiratory complex II, has been determined, revealing the electron transport pathway from the electron donor, succinate, to the terminal electron acceptor, ubiquinone. It was found that the SQR redox centers are arranged in a manner that aids the prevention of reactive oxygen species (ROS) formation at the flavin adenine dinucleotide. This is likely to be the main reason SQR is expressed during aerobic respiration rather than the related enzyme fumarate reductase, which produces high levels of ROS. Furthermore, symptoms of genetic disorders associated with mitochondrial SQR mutations may be a result of ROS formation resulting from impaired electron transport in the enzyme.
*[[Succinate Dehydrogenase|Succinate Dehydrogenase]]
 
*[[Succinate dehydrogenase 3D structures|Succinate dehydrogenase 3D structures]]
==About this Structure==
== References ==
1NEK is a [[Protein complex]] structure of sequences from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1NEK OCA].
<references/>
 
__TOC__
==Reference==
</StructureSection>
Architecture of succinate dehydrogenase and reactive oxygen species generation., Yankovskaya V, Horsefield R, Tornroth S, Luna-Chavez C, Miyoshi H, Leger C, Byrne B, Cecchini G, Iwata S, Science. 2003 Jan 31;299(5607):700-4. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/12560550 12560550]
[[Category: Citric Acid Cycle]]
[[Category: Escherichia coli]]
[[Category: Escherichia coli]]
[[Category: Protein complex]]
[[Category: Large Structures]]
[[Category: Byrne, B.]]
[[Category: RCSB PDB Molecule of the Month]]
[[Category: Cecchini, G.]]
[[Category: Byrne B]]
[[Category: Horsefield, R.]]
[[Category: Cecchini G]]
[[Category: Iwata, S.]]
[[Category: Horsefield R]]
[[Category: Leger, C.]]
[[Category: Iwata S]]
[[Category: Luna-Chavez, C.]]
[[Category: Leger C]]
[[Category: Miyoshi, H.]]
[[Category: Luna-Chavez C]]
[[Category: Tornroth, S.]]
[[Category: Miyoshi H]]
[[Category: Yankovskaya, V.]]
[[Category: Tornroth S]]
[[Category: membrane protein]]
[[Category: Yankovskaya V]]
[[Category: oxygen respiratory chain]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun Mar 30 22:29:16 2008''

Latest revision as of 03:17, 21 November 2024

Complex II (Succinate Dehydrogenase) From E. Coli with ubiquinone boundComplex II (Succinate Dehydrogenase) From E. Coli with ubiquinone bound

Structural highlights

1nek is a 4 chain structure with sequence from Escherichia coli. The October 2012 RCSB PDB Molecule of the Month feature on Citric Acid Cycle by David Goodsell is 10.2210/rcsb_pdb/mom_2012_10. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.6Å
Ligands:, , , , , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

SDHA_ECOLI Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth.[1] [2] [3] [4]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The structure of Escherichia coli succinate dehydrogenase (SQR), analogous to the mitochondrial respiratory complex II, has been determined, revealing the electron transport pathway from the electron donor, succinate, to the terminal electron acceptor, ubiquinone. It was found that the SQR redox centers are arranged in a manner that aids the prevention of reactive oxygen species (ROS) formation at the flavin adenine dinucleotide. This is likely to be the main reason SQR is expressed during aerobic respiration rather than the related enzyme fumarate reductase, which produces high levels of ROS. Furthermore, symptoms of genetic disorders associated with mitochondrial SQR mutations may be a result of ROS formation resulting from impaired electron transport in the enzyme.

Architecture of succinate dehydrogenase and reactive oxygen species generation.,Yankovskaya V, Horsefield R, Tornroth S, Luna-Chavez C, Miyoshi H, Leger C, Byrne B, Cecchini G, Iwata S Science. 2003 Jan 31;299(5607):700-4. PMID:12560550[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. McNeil MB, Hampton HG, Hards KJ, Watson BN, Cook GM, Fineran PC. The succinate dehydrogenase assembly factor, SdhE, is required for the flavinylation and activation of fumarate reductase in bacteria. FEBS Lett. 2014 Jan 31;588(3):414-21. doi: 10.1016/j.febslet.2013.12.019. Epub, 2013 Dec 25. PMID:24374335 doi:http://dx.doi.org/10.1016/j.febslet.2013.12.019
  2. Yankovskaya V, Horsefield R, Tornroth S, Luna-Chavez C, Miyoshi H, Leger C, Byrne B, Cecchini G, Iwata S. Architecture of succinate dehydrogenase and reactive oxygen species generation. Science. 2003 Jan 31;299(5607):700-4. PMID:12560550 doi:10.1126/science.1079605
  3. Horsefield R, Yankovskaya V, Sexton G, Whittingham W, Shiomi K, Omura S, Byrne B, Cecchini G, Iwata S. Structural and computational analysis of the quinone-binding site of complex II (succinate-ubiquinone oxidoreductase): a mechanism of electron transfer and proton conduction during ubiquinone reduction. J Biol Chem. 2006 Mar 17;281(11):7309-16. Epub 2005 Dec 27. PMID:16407191 doi:http://dx.doi.org/10.1074/jbc.M508173200
  4. Ruprecht J, Yankovskaya V, Maklashina E, Iwata S, Cecchini G. Structure of Escherichia coli succinate:quinone oxidoreductase with an occupied and empty quinone-binding site. J Biol Chem. 2009 Oct 23;284(43):29836-46. Epub 2009 Aug 25. PMID:19710024 doi:10.1074/jbc.M109.010058
  5. Yankovskaya V, Horsefield R, Tornroth S, Luna-Chavez C, Miyoshi H, Leger C, Byrne B, Cecchini G, Iwata S. Architecture of succinate dehydrogenase and reactive oxygen species generation. Science. 2003 Jan 31;299(5607):700-4. PMID:12560550 doi:10.1126/science.1079605

1nek, resolution 2.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA