1kyq: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 15: Line 15:
   <jmolCheckbox>
   <jmolCheckbox>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ky/1kyq_consurf.spt"</scriptWhenChecked>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ky/1kyq_consurf.spt"</scriptWhenChecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1kyq ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1kyq ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Sirohaem is a tetrapyrrole-derived prosthetic group that is required for the essential assimilation of sulfur and nitrogen into all living systems as part of the sulfite and nitrite reductase systems. The final two steps in the biosynthesis of sirohaem involve a beta-NAD(+)-dependent dehydrogenation of precorrin-2 to generate sirohydrochlorin followed by ferrochelation to yield sirohaem. In Saccharomyces cerevisiae, Met8p is a bifunctional enzyme that carries out both of these reactions. Here, we report the 2.2 A resolution crystal structure of Met8p, which adopts a novel fold that bears no resemblance to the previously determined structures of cobalt- or ferro-chelatases. Analysis of mutant proteins suggests that both catalytic activities share a single active site, and that Asp141 plays an essential role in both dehydrogenase and chelatase processes.
The structure of Saccharomyces cerevisiae Met8p, a bifunctional dehydrogenase and ferrochelatase.,Schubert HL, Raux E, Brindley AA, Leech HK, Wilson KS, Hill CP, Warren MJ EMBO J. 2002 May 1;21(9):2068-75. PMID:11980703<ref>PMID:11980703</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1kyq" style="background-color:#fffaf0;"></div>
== References ==
== References ==
<references/>
<references/>

Latest revision as of 11:36, 6 November 2024

Met8p: A bifunctional NAD-dependent dehydrogenase and ferrochelatase involved in siroheme synthesis.Met8p: A bifunctional NAD-dependent dehydrogenase and ferrochelatase involved in siroheme synthesis.

Structural highlights

1kyq is a 3 chain structure with sequence from Saccharomyces cerevisiae. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.2Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

MET8_YEAST Catalyzes the conversion of precorrin-2 into siroheme. This reaction consist of the NAD-dependent oxidation of precorrin-2 into sirohydrochlorin and its subsequent ferrochelation into siroheme.[1]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Sirohaem is a tetrapyrrole-derived prosthetic group that is required for the essential assimilation of sulfur and nitrogen into all living systems as part of the sulfite and nitrite reductase systems. The final two steps in the biosynthesis of sirohaem involve a beta-NAD(+)-dependent dehydrogenation of precorrin-2 to generate sirohydrochlorin followed by ferrochelation to yield sirohaem. In Saccharomyces cerevisiae, Met8p is a bifunctional enzyme that carries out both of these reactions. Here, we report the 2.2 A resolution crystal structure of Met8p, which adopts a novel fold that bears no resemblance to the previously determined structures of cobalt- or ferro-chelatases. Analysis of mutant proteins suggests that both catalytic activities share a single active site, and that Asp141 plays an essential role in both dehydrogenase and chelatase processes.

The structure of Saccharomyces cerevisiae Met8p, a bifunctional dehydrogenase and ferrochelatase.,Schubert HL, Raux E, Brindley AA, Leech HK, Wilson KS, Hill CP, Warren MJ EMBO J. 2002 May 1;21(9):2068-75. PMID:11980703[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Raux E, McVeigh T, Peters SE, Leustek T, Warren MJ. The role of Saccharomyces cerevisiae Met1p and Met8p in sirohaem and cobalamin biosynthesis. Biochem J. 1999 Mar 15;338 ( Pt 3):701-8. PMID:10051442
  2. Schubert HL, Raux E, Brindley AA, Leech HK, Wilson KS, Hill CP, Warren MJ. The structure of Saccharomyces cerevisiae Met8p, a bifunctional dehydrogenase and ferrochelatase. EMBO J. 2002 May 1;21(9):2068-75. PMID:11980703 doi:10.1093/emboj/21.9.2068

1kyq, resolution 2.20Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA