1jnf: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(14 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1jnf.jpg|left|200px]]


{{Structure
==Rabbit serum transferrin at 2.6 A resolution.==
|PDB= 1jnf |SIZE=350|CAPTION= <scene name='initialview01'>1jnf</scene>, resolution 2.60&Aring;
<StructureSection load='1jnf' size='340' side='right'caption='[[1jnf]], [[Resolution|resolution]] 2.60&Aring;' scene=''>
|SITE=  
== Structural highlights ==
|LIGAND= <scene name='pdbligand=CO3:CARBONATE+ION'>CO3</scene>, <scene name='pdbligand=FE:FE+(III)+ION'>FE</scene> and <scene name='pdbligand=CL:CHLORIDE ION'>CL</scene>
<table><tr><td colspan='2'>[[1jnf]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Oryctolagus_cuniculus Oryctolagus cuniculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1JNF OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1JNF FirstGlance]. <br>
|ACTIVITY=  
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.6&#8491;</td></tr>
|GENE=  
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=CO3:CARBONATE+ION'>CO3</scene>, <scene name='pdbligand=FE:FE+(III)+ION'>FE</scene></td></tr>
}}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1jnf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1jnf OCA], [https://pdbe.org/1jnf PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1jnf RCSB], [https://www.ebi.ac.uk/pdbsum/1jnf PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1jnf ProSAT]</span></td></tr>
 
</table>
'''Rabbit serum transferrin at 2.6 A resolution.'''
== Function ==
 
[https://www.uniprot.org/uniprot/TRFE_RABIT TRFE_RABIT] Transferrins are iron binding transport proteins which can bind two Fe(3+) ions in association with the binding of an anion, usually bicarbonate. It is responsible for the transport of iron from sites of absorption and heme degradation to those of storage and utilization. Serum transferrin may also have a further role in stimulating cell proliferation.
 
== Evolutionary Conservation ==
==Overview==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/jn/1jnf_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1jnf ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The serum transferrins are monomeric proteins with a molecular mass of around 80 kDa and are responsible for the transport of iron in vertebrates. The three-dimensional structures of diferric porcine and rabbit serum transferrin have been refined against X-ray diffraction data extending to 2.15 and 2.60 A, respectively. Data for both proteins were collected using synchrotron radiation at temperatures of 277 K. The porcine protein crystallizes in the space group C2, with unit-cell parameters a = 223.8, b = 44.9, c = 78.9 A, beta = 105.4 degrees with one molecule in the asymmetric unit. The structure was solved by molecular-replacement methods using rabbit serum transferrin as the search model. The structure was refined using REFMAC, with a final residual of 13.8% (R(free) = 18.2% for a 5% data sample) for all data to 2.15 A. The final model comprises 5254 protein atoms, two Fe(3+) cations and two CO(3)(2-) anions, one N-acetyl glucosamine moiety and 494 water molecules. The rabbit protein crystallizes in space group P4(3)2(1)2, with unit-cell parameters a = 127.2, c = 144.9 A and one molecule per asymmetric unit. The structure was solved using the method of multiple isomorphous replacement and refined using REFMAC to give a final residual of 18.6% (R(free) = 22.2% for a 5% data sample) for all data to 2.60 A. The final model comprises 5216 protein atoms, two Fe(3+) cations and two CO(3)(2-) anions, a Cl(-) anion and 206 solvent molecules; there is no clear indication of the carbohydrate moiety attached to Asn490 (rabbit serum numbering). Both molecules adopt a bilobal structure typical for members of the transferrin family. Each of the structurally homologous lobes contains two dissimilar domains with a single iron-binding site buried within the interdomain cleft. The porcine serum protein lacks an interdomain disulfide bridge close to the connecting peptide between the lobes, but this seems to have little effect on the overall orientation of the lobes. The N-lobes of both proteins possess lysine residues, one from each of the two domains, that lie in close proximity to one another to form the so-called dilysine trigger. The more acid-labile release of iron from serum transferrins than from lactoferrins is discussed.
The serum transferrins are monomeric proteins with a molecular mass of around 80 kDa and are responsible for the transport of iron in vertebrates. The three-dimensional structures of diferric porcine and rabbit serum transferrin have been refined against X-ray diffraction data extending to 2.15 and 2.60 A, respectively. Data for both proteins were collected using synchrotron radiation at temperatures of 277 K. The porcine protein crystallizes in the space group C2, with unit-cell parameters a = 223.8, b = 44.9, c = 78.9 A, beta = 105.4 degrees with one molecule in the asymmetric unit. The structure was solved by molecular-replacement methods using rabbit serum transferrin as the search model. The structure was refined using REFMAC, with a final residual of 13.8% (R(free) = 18.2% for a 5% data sample) for all data to 2.15 A. The final model comprises 5254 protein atoms, two Fe(3+) cations and two CO(3)(2-) anions, one N-acetyl glucosamine moiety and 494 water molecules. The rabbit protein crystallizes in space group P4(3)2(1)2, with unit-cell parameters a = 127.2, c = 144.9 A and one molecule per asymmetric unit. The structure was solved using the method of multiple isomorphous replacement and refined using REFMAC to give a final residual of 18.6% (R(free) = 22.2% for a 5% data sample) for all data to 2.60 A. The final model comprises 5216 protein atoms, two Fe(3+) cations and two CO(3)(2-) anions, a Cl(-) anion and 206 solvent molecules; there is no clear indication of the carbohydrate moiety attached to Asn490 (rabbit serum numbering). Both molecules adopt a bilobal structure typical for members of the transferrin family. Each of the structurally homologous lobes contains two dissimilar domains with a single iron-binding site buried within the interdomain cleft. The porcine serum protein lacks an interdomain disulfide bridge close to the connecting peptide between the lobes, but this seems to have little effect on the overall orientation of the lobes. The N-lobes of both proteins possess lysine residues, one from each of the two domains, that lie in close proximity to one another to form the so-called dilysine trigger. The more acid-labile release of iron from serum transferrins than from lactoferrins is discussed.


==About this Structure==
The crystal and molecular structures of diferric porcine and rabbit serum transferrins at resolutions of 2.15 and 2.60 A, respectively.,Hall DR, Hadden JM, Leonard GA, Bailey S, Neu M, Winn M, Lindley PF Acta Crystallogr D Biol Crystallogr. 2002 Jan;58(Pt 1):70-80. Epub 2001, Dec 21. PMID:11752780<ref>PMID:11752780</ref>
1JNF is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Oryctolagus_cuniculus Oryctolagus cuniculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1JNF OCA].


==Reference==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
The crystal and molecular structures of diferric porcine and rabbit serum transferrins at resolutions of 2.15 and 2.60 A, respectively., Hall DR, Hadden JM, Leonard GA, Bailey S, Neu M, Winn M, Lindley PF, Acta Crystallogr D Biol Crystallogr. 2002 Jan;58(Pt 1):70-80. Epub 2001, Dec 21. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/11752780 11752780]
</div>
<div class="pdbe-citations 1jnf" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Large Structures]]
[[Category: Oryctolagus cuniculus]]
[[Category: Oryctolagus cuniculus]]
[[Category: Single protein]]
[[Category: Bailey S]]
[[Category: Bailey, S.]]
[[Category: Hadden JM]]
[[Category: Hadden, J M.]]
[[Category: Hall DR]]
[[Category: Hall, D R.]]
[[Category: Leonard GA]]
[[Category: Leonard, G A.]]
[[Category: Lindley PF]]
[[Category: Lindley, P F.]]
[[Category: Neu M]]
[[Category: Neu, M.]]
[[Category: Winn M]]
[[Category: Winn, M.]]
[[Category: CL]]
[[Category: CO3]]
[[Category: FE]]
[[Category: beta-alpha protein]]
[[Category: bilobal]]
[[Category: iron transport]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 12:05:58 2008''

Latest revision as of 09:50, 30 October 2024

Rabbit serum transferrin at 2.6 A resolution.Rabbit serum transferrin at 2.6 A resolution.

Structural highlights

1jnf is a 1 chain structure with sequence from Oryctolagus cuniculus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.6Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

TRFE_RABIT Transferrins are iron binding transport proteins which can bind two Fe(3+) ions in association with the binding of an anion, usually bicarbonate. It is responsible for the transport of iron from sites of absorption and heme degradation to those of storage and utilization. Serum transferrin may also have a further role in stimulating cell proliferation.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The serum transferrins are monomeric proteins with a molecular mass of around 80 kDa and are responsible for the transport of iron in vertebrates. The three-dimensional structures of diferric porcine and rabbit serum transferrin have been refined against X-ray diffraction data extending to 2.15 and 2.60 A, respectively. Data for both proteins were collected using synchrotron radiation at temperatures of 277 K. The porcine protein crystallizes in the space group C2, with unit-cell parameters a = 223.8, b = 44.9, c = 78.9 A, beta = 105.4 degrees with one molecule in the asymmetric unit. The structure was solved by molecular-replacement methods using rabbit serum transferrin as the search model. The structure was refined using REFMAC, with a final residual of 13.8% (R(free) = 18.2% for a 5% data sample) for all data to 2.15 A. The final model comprises 5254 protein atoms, two Fe(3+) cations and two CO(3)(2-) anions, one N-acetyl glucosamine moiety and 494 water molecules. The rabbit protein crystallizes in space group P4(3)2(1)2, with unit-cell parameters a = 127.2, c = 144.9 A and one molecule per asymmetric unit. The structure was solved using the method of multiple isomorphous replacement and refined using REFMAC to give a final residual of 18.6% (R(free) = 22.2% for a 5% data sample) for all data to 2.60 A. The final model comprises 5216 protein atoms, two Fe(3+) cations and two CO(3)(2-) anions, a Cl(-) anion and 206 solvent molecules; there is no clear indication of the carbohydrate moiety attached to Asn490 (rabbit serum numbering). Both molecules adopt a bilobal structure typical for members of the transferrin family. Each of the structurally homologous lobes contains two dissimilar domains with a single iron-binding site buried within the interdomain cleft. The porcine serum protein lacks an interdomain disulfide bridge close to the connecting peptide between the lobes, but this seems to have little effect on the overall orientation of the lobes. The N-lobes of both proteins possess lysine residues, one from each of the two domains, that lie in close proximity to one another to form the so-called dilysine trigger. The more acid-labile release of iron from serum transferrins than from lactoferrins is discussed.

The crystal and molecular structures of diferric porcine and rabbit serum transferrins at resolutions of 2.15 and 2.60 A, respectively.,Hall DR, Hadden JM, Leonard GA, Bailey S, Neu M, Winn M, Lindley PF Acta Crystallogr D Biol Crystallogr. 2002 Jan;58(Pt 1):70-80. Epub 2001, Dec 21. PMID:11752780[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Hall DR, Hadden JM, Leonard GA, Bailey S, Neu M, Winn M, Lindley PF. The crystal and molecular structures of diferric porcine and rabbit serum transferrins at resolutions of 2.15 and 2.60 A, respectively. Acta Crystallogr D Biol Crystallogr. 2002 Jan;58(Pt 1):70-80. Epub 2001, Dec 21. PMID:11752780

1jnf, resolution 2.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA