1fsw: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(12 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Seed}}
[[Image:1fsw.png|left|200px]]


<!--
==AMPC BETA-LACTAMASE FROM E. COLI COMPLEXED WITH INHIBITOR CEPHALOTHINBORONIC ACID==
The line below this paragraph, containing "STRUCTURE_1fsw", creates the "Structure Box" on the page.
<StructureSection load='1fsw' size='340' side='right'caption='[[1fsw]], [[Resolution|resolution]] 1.90&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)  
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[1fsw]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1FSW OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1FSW FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.9&#8491;</td></tr>
-->
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CTB:N-2-THIOPHEN-2-YL-ACETAMIDE+BORONIC+ACID'>CTB</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr>
{{STRUCTURE_1fsw|  PDB=1fsw  |  SCENE=  }}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1fsw FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1fsw OCA], [https://pdbe.org/1fsw PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1fsw RCSB], [https://www.ebi.ac.uk/pdbsum/1fsw PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1fsw ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/AMPC_ECOLI AMPC_ECOLI] This protein is a serine beta-lactamase with a substrate specificity for cephalosporins.
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/fs/1fsw_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1fsw ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
BACKGROUND: Penicillins and cephalosporins are among the most widely used and successful antibiotics. The emergence of resistance to these beta-lactams, most often through bacterial expression of beta-lactamases, threatens public health. To understand how beta-lactamases recognize their substrates, it would be helpful to know their binding energies. Unfortunately, these have been difficult to measure because beta-lactams form covalent adducts with beta-lactamases. This has complicated functional analyses and inhibitor design. RESULTS: To investigate the contribution to interaction energy of the key amide (R1) side chain of beta-lactam antibiotics, eight acylglycineboronic acids that bear the side chains of characteristic penicillins and cephalosporins, as well as four other analogs, were synthesized. These transition-state analogs form reversible adducts with serine beta-lactamases. Therefore, binding energies can be calculated directly from K(i) values. The K(i) values measured span four orders of magnitude against the Group I beta-lactamase AmpC and three orders of magnitude against the Group II beta-lactamase TEM-1. The acylglycineboronic acids have K(i) values as low as 20 nM against AmpC and as low as 390 nM against TEM-1. The inhibitors showed little activity against serine proteases, such as chymotrypsin. R1 side chains characteristic of beta-lactam inhibitors did not have better affinity for AmpC than did side chains characteristic of beta-lactam substrates. Two of the inhibitors reversed the resistance of pathogenic bacteria to beta-lactams in cell culture. Structures of two inhibitors in their complexes with AmpC were determined by X-ray crystallography to 1.90 A and 1.75 A resolution; these structures suggest interactions that are important to the affinity of the inhibitors. CONCLUSIONS: Acylglycineboronic acids allow us to begin to dissect interaction energies between beta-lactam side chains and beta-lactamases. Surprisingly, there is little correlation between the affinity contributed by R1 side chains and their occurrence in beta-lactam inhibitors or beta-lactam substrates of serine beta-lactamases. Nevertheless, presented in acylglycineboronic acids, these side chains can lead to inhibitors with high affinities and specificities. The structures of their complexes with AmpC give a molecular context to their affinities and may guide the design of anti-resistance compounds in this series.


===AMPC BETA-LACTAMASE FROM E. COLI COMPLEXED WITH INHIBITOR CEPHALOTHINBORONIC ACID===
Energetic, structural, and antimicrobial analyses of beta-lactam side chain recognition by beta-lactamases.,Caselli E, Powers RA, Blasczcak LC, Wu CY, Prati F, Shoichet BK Chem Biol. 2001 Jan;8(1):17-31. PMID:11182316<ref>PMID:11182316</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1fsw" style="background-color:#fffaf0;"></div>


<!--
==See Also==
The line below this paragraph, {{ABSTRACT_PUBMED_11182316}}, adds the Publication Abstract to the page
*[[Beta-lactamase 3D structures|Beta-lactamase 3D structures]]
(as it appears on PubMed at http://www.pubmed.gov), where 11182316 is the PubMed ID number.
== References ==
-->
<references/>
{{ABSTRACT_PUBMED_11182316}}
__TOC__
 
</StructureSection>
==About this Structure==
[[Category: Escherichia coli K-12]]
1FSW is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1FSW OCA].
[[Category: Large Structures]]
 
[[Category: Blaszczak LC]]
==Reference==
[[Category: Caselli E]]
Energetic, structural, and antimicrobial analyses of beta-lactam side chain recognition by beta-lactamases., Caselli E, Powers RA, Blasczcak LC, Wu CY, Prati F, Shoichet BK, Chem Biol. 2001 Jan;8(1):17-31. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/11182316 11182316]
[[Category: Powers RA]]
[[Category: Beta-lactamase]]
[[Category: Prati F]]
[[Category: Escherichia coli]]
[[Category: Shoichet BK]]
[[Category: Single protein]]
[[Category: Wu CY]]
[[Category: Blaszczak, L C.]]
[[Category: Caselli, E.]]
[[Category: Powers, R A.]]
[[Category: Prati, F.]]
[[Category: Shoichet, B K.]]
[[Category: Wu, C Y.]]
[[Category: Beta-lactamase]]
[[Category: Cephalosporinase]]
[[Category: Serine hydrolase]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Tue Jul  1 03:53:51 2008''

Latest revision as of 11:26, 6 November 2024

AMPC BETA-LACTAMASE FROM E. COLI COMPLEXED WITH INHIBITOR CEPHALOTHINBORONIC ACIDAMPC BETA-LACTAMASE FROM E. COLI COMPLEXED WITH INHIBITOR CEPHALOTHINBORONIC ACID

Structural highlights

1fsw is a 2 chain structure with sequence from Escherichia coli K-12. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.9Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

AMPC_ECOLI This protein is a serine beta-lactamase with a substrate specificity for cephalosporins.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

BACKGROUND: Penicillins and cephalosporins are among the most widely used and successful antibiotics. The emergence of resistance to these beta-lactams, most often through bacterial expression of beta-lactamases, threatens public health. To understand how beta-lactamases recognize their substrates, it would be helpful to know their binding energies. Unfortunately, these have been difficult to measure because beta-lactams form covalent adducts with beta-lactamases. This has complicated functional analyses and inhibitor design. RESULTS: To investigate the contribution to interaction energy of the key amide (R1) side chain of beta-lactam antibiotics, eight acylglycineboronic acids that bear the side chains of characteristic penicillins and cephalosporins, as well as four other analogs, were synthesized. These transition-state analogs form reversible adducts with serine beta-lactamases. Therefore, binding energies can be calculated directly from K(i) values. The K(i) values measured span four orders of magnitude against the Group I beta-lactamase AmpC and three orders of magnitude against the Group II beta-lactamase TEM-1. The acylglycineboronic acids have K(i) values as low as 20 nM against AmpC and as low as 390 nM against TEM-1. The inhibitors showed little activity against serine proteases, such as chymotrypsin. R1 side chains characteristic of beta-lactam inhibitors did not have better affinity for AmpC than did side chains characteristic of beta-lactam substrates. Two of the inhibitors reversed the resistance of pathogenic bacteria to beta-lactams in cell culture. Structures of two inhibitors in their complexes with AmpC were determined by X-ray crystallography to 1.90 A and 1.75 A resolution; these structures suggest interactions that are important to the affinity of the inhibitors. CONCLUSIONS: Acylglycineboronic acids allow us to begin to dissect interaction energies between beta-lactam side chains and beta-lactamases. Surprisingly, there is little correlation between the affinity contributed by R1 side chains and their occurrence in beta-lactam inhibitors or beta-lactam substrates of serine beta-lactamases. Nevertheless, presented in acylglycineboronic acids, these side chains can lead to inhibitors with high affinities and specificities. The structures of their complexes with AmpC give a molecular context to their affinities and may guide the design of anti-resistance compounds in this series.

Energetic, structural, and antimicrobial analyses of beta-lactam side chain recognition by beta-lactamases.,Caselli E, Powers RA, Blasczcak LC, Wu CY, Prati F, Shoichet BK Chem Biol. 2001 Jan;8(1):17-31. PMID:11182316[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Caselli E, Powers RA, Blasczcak LC, Wu CY, Prati F, Shoichet BK. Energetic, structural, and antimicrobial analyses of beta-lactam side chain recognition by beta-lactamases. Chem Biol. 2001 Jan;8(1):17-31. PMID:11182316

1fsw, resolution 1.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA