1dt6: Difference between revisions
No edit summary |
No edit summary |
||
Line 15: | Line 15: | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/dt/1dt6_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/dt/1dt6_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1dt6 ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1dt6 ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Microsomal cytochrome P450s participate in xenobiotic detoxification, procarcinogen activation, and steroid hormone synthesis. The first structure of a mammalian microsomal P450 suggests that the association of P450s with the endoplasmic reticulum involves a hydrophobic surface of the protein formed by noncontiguous portions of the polypeptide chain. This interaction places the entrance of the putative substrate access channel in or near the membrane and orients the face of the protein proximal to the heme cofactor perpendicular to the plane of the membrane for interaction with the P450 reductase. This structure offers a template for modeling other mammalian P450s and should aid drug discovery and the prediction of drug-drug interactions. | |||
Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity.,Williams PA, Cosme J, Sridhar V, Johnson EF, McRee DE Mol Cell. 2000 Jan;5(1):121-31. PMID:10678174<ref>PMID:10678174</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 1dt6" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== | ||
*[[Cytochrome P450 3D structures|Cytochrome P450 3D structures]] | *[[Cytochrome P450 3D structures|Cytochrome P450 3D structures]] | ||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Latest revision as of 09:32, 30 October 2024
STRUCTURE OF MAMMALIAN CYTOCHROME P450 2C5STRUCTURE OF MAMMALIAN CYTOCHROME P450 2C5
Structural highlights
FunctionCP2C5_RABIT Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedMicrosomal cytochrome P450s participate in xenobiotic detoxification, procarcinogen activation, and steroid hormone synthesis. The first structure of a mammalian microsomal P450 suggests that the association of P450s with the endoplasmic reticulum involves a hydrophobic surface of the protein formed by noncontiguous portions of the polypeptide chain. This interaction places the entrance of the putative substrate access channel in or near the membrane and orients the face of the protein proximal to the heme cofactor perpendicular to the plane of the membrane for interaction with the P450 reductase. This structure offers a template for modeling other mammalian P450s and should aid drug discovery and the prediction of drug-drug interactions. Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity.,Williams PA, Cosme J, Sridhar V, Johnson EF, McRee DE Mol Cell. 2000 Jan;5(1):121-31. PMID:10678174[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|