1d3n: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(13 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Seed}}
[[Image:1d3n.png|left|200px]]


<!--
==METHIONINE CORE MUTATION==
The line below this paragraph, containing "STRUCTURE_1d3n", creates the "Structure Box" on the page.
<StructureSection load='1d3n' size='340' side='right'caption='[[1d3n]], [[Resolution|resolution]] 2.00&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[1d3n]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_virus_T4 Escherichia virus T4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1D3N OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1D3N FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2&#8491;</td></tr>
-->
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=HED:2-HYDROXYETHYL+DISULFIDE'>HED</scene>, <scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr>
{{STRUCTURE_1d3n|  PDB=1d3n  |  SCENE=  }}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1d3n FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1d3n OCA], [https://pdbe.org/1d3n PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1d3n RCSB], [https://www.ebi.ac.uk/pdbsum/1d3n PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1d3n ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/ENLYS_BPT4 ENLYS_BPT4] Endolysin with lysozyme activity that degrades host peptidoglycans and participates with the holin and spanin proteins in the sequential events which lead to the programmed host cell lysis releasing the mature viral particles. Once the holin has permeabilized the host cell membrane, the endolysin can reach the periplasm and break down the peptidoglycan layer.<ref>PMID:22389108</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/d3/1d3n_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1d3n ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Using heavily methionine-substituted T4 lysozyme as an example, it is shown how the addition or deletion of a small number of methionines can simplify the location of selenium sites for use in MAD phasing. By comparing the X-ray data for a large number of singly substituted lysozymes, it is shown that the optimal amino acid to be substituted by methionine is leucine, followed, in order of preference, by phenylalanine, isoleucine and valine. The identification of leucine as the first choice agrees with the ranking suggested by the Dayhoff mutation probability, i.e. by the frequency of amino-acid substitutions in the sequences of related proteins. The ranking of the second and subsequent choices, however, differ significantly.


===METHIONINE CORE MUTATION===
Use of differentially substituted selenomethionine proteins in X-ray structure determination.,Gassner NC, Matthews BW Acta Crystallogr D Biol Crystallogr. 1999 Dec;55(Pt 12):1967-70. PMID:10666571<ref>PMID:10666571</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1d3n" style="background-color:#fffaf0;"></div>


<!--
==See Also==
The line below this paragraph, {{ABSTRACT_PUBMED_10666571}}, adds the Publication Abstract to the page
*[[Lysozyme 3D structures|Lysozyme 3D structures]]
(as it appears on PubMed at http://www.pubmed.gov), where 10666571 is the PubMed ID number.
== References ==
-->
<references/>
{{ABSTRACT_PUBMED_10666571}}
__TOC__
 
</StructureSection>
==About this Structure==
[[Category: Escherichia virus T4]]
1D3N is a 1 chain structure of sequence from [http://en.wikipedia.org/wiki/Enterobacteria_phage_t4 Enterobacteria phage t4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1D3N OCA].
[[Category: Large Structures]]
 
[[Category: Gassner NC]]
==Reference==
[[Category: Matthews BW]]
<ref group="xtra">PMID:10666571</ref><references group="xtra"/>
[[Category: Enterobacteria phage t4]]
[[Category: Lysozyme]]
[[Category: Gassner, N C.]]
[[Category: Matthews, B W.]]
[[Category: Methionine core mutant]]
[[Category: Protein engineering]]
[[Category: Protein folding]]
[[Category: Selenomethionine]]
[[Category: T4 lysozyme]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Tue Feb 17 05:31:09 2009''

Latest revision as of 09:31, 30 October 2024

METHIONINE CORE MUTATIONMETHIONINE CORE MUTATION

Structural highlights

1d3n is a 1 chain structure with sequence from Escherichia virus T4. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

ENLYS_BPT4 Endolysin with lysozyme activity that degrades host peptidoglycans and participates with the holin and spanin proteins in the sequential events which lead to the programmed host cell lysis releasing the mature viral particles. Once the holin has permeabilized the host cell membrane, the endolysin can reach the periplasm and break down the peptidoglycan layer.[1]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Using heavily methionine-substituted T4 lysozyme as an example, it is shown how the addition or deletion of a small number of methionines can simplify the location of selenium sites for use in MAD phasing. By comparing the X-ray data for a large number of singly substituted lysozymes, it is shown that the optimal amino acid to be substituted by methionine is leucine, followed, in order of preference, by phenylalanine, isoleucine and valine. The identification of leucine as the first choice agrees with the ranking suggested by the Dayhoff mutation probability, i.e. by the frequency of amino-acid substitutions in the sequences of related proteins. The ranking of the second and subsequent choices, however, differ significantly.

Use of differentially substituted selenomethionine proteins in X-ray structure determination.,Gassner NC, Matthews BW Acta Crystallogr D Biol Crystallogr. 1999 Dec;55(Pt 12):1967-70. PMID:10666571[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Moussa SH, Kuznetsov V, Tran TA, Sacchettini JC, Young R. Protein determinants of phage T4 lysis inhibition. Protein Sci. 2012 Apr;21(4):571-82. doi: 10.1002/pro.2042. Epub 2012 Mar 2. PMID:22389108 doi:http://dx.doi.org/10.1002/pro.2042
  2. Gassner NC, Matthews BW. Use of differentially substituted selenomethionine proteins in X-ray structure determination. Acta Crystallogr D Biol Crystallogr. 1999 Dec;55(Pt 12):1967-70. PMID:10666571

1d3n, resolution 2.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA