1yef: Difference between revisions
No edit summary |
No edit summary |
||
(15 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== | ==STRUCTURE OF IGG2A FAB FRAGMENT (D2.3) COMPLEXED WITH SUBSTRATE ANALOGUE== | ||
<StructureSection load='1yef' size='340' side='right'caption='[[1yef]], [[Resolution|resolution]] 2.00Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1yef]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1YEF OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1YEF FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=PNC:PARA-NITROBENZYL+GLUTARYL+GLYCINIC+ACID'>PNC</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1yef FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1yef OCA], [https://pdbe.org/1yef PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1yef RCSB], [https://www.ebi.ac.uk/pdbsum/1yef PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1yef ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/GCAA_MOUSE GCAA_MOUSE] | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ye/1yef_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1yef ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The x-ray structures of the unliganded esterase-like catalytic antibody D2.3 and its complexes with a substrate analogue and with one of the reaction products are analyzed. Together with the structure of the phosphonate transition state analogue hapten complex, these crystal structures provide a complete description of the reaction pathway. At alkaline pH, D2.3 acts by preferential stabilization of the negatively charged oxyanion intermediate of the reaction that results from hydroxide attack on the substrate. A tyrosine residue plays a crucial role in catalysis: it activates the ester substrate and, together with an asparagine, it stabilizes the oxyanion intermediate. A canal allows facile diffusion of water molecules to the reaction center that is deeply buried in the structure. Residues bordering this canal provide targets for mutagenesis to introduce a general base in the vicinity of the reaction center. | The x-ray structures of the unliganded esterase-like catalytic antibody D2.3 and its complexes with a substrate analogue and with one of the reaction products are analyzed. Together with the structure of the phosphonate transition state analogue hapten complex, these crystal structures provide a complete description of the reaction pathway. At alkaline pH, D2.3 acts by preferential stabilization of the negatively charged oxyanion intermediate of the reaction that results from hydroxide attack on the substrate. A tyrosine residue plays a crucial role in catalysis: it activates the ester substrate and, together with an asparagine, it stabilizes the oxyanion intermediate. A canal allows facile diffusion of water molecules to the reaction center that is deeply buried in the structure. Residues bordering this canal provide targets for mutagenesis to introduce a general base in the vicinity of the reaction center. | ||
X-ray structures of a hydrolytic antibody and of complexes elucidate catalytic pathway from substrate binding and transition state stabilization through water attack and product release.,Gigant B, Charbonnier JB, Eshhar Z, Green BS, Knossow M Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7857-61. PMID:9223277<ref>PMID:9223277</ref> | |||
== | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | |||
<div class="pdbe-citations 1yef" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Antibody 3D structures|Antibody 3D structures]] | |||
*[[3D structures of non-human antibody|3D structures of non-human antibody]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Large Structures]] | |||
[[Category: Mus musculus]] | [[Category: Mus musculus]] | ||
[[Category: Gigant B]] | |||
[[Category: Gigant | [[Category: Knossow M]] | ||
[[Category: Knossow | |||