1ri8: Difference between revisions
No edit summary |
No edit summary |
||
(11 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
< | ==Crystal Structure of the Camelid Single Domain Antibody 1D2L19 in complex with Hen Egg White Lysozyme== | ||
<StructureSection load='1ri8' size='340' side='right'caption='[[1ri8]], [[Resolution|resolution]] 1.85Å' scene=''> | |||
You may | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1ri8]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Camelus_dromedarius Camelus dromedarius] and [https://en.wikipedia.org/wiki/Gallus_gallus Gallus gallus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1RI8 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1RI8 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.85Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1ri8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ri8 OCA], [https://pdbe.org/1ri8 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1ri8 RCSB], [https://www.ebi.ac.uk/pdbsum/1ri8 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1ri8 ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/LYSC_CHICK LYSC_CHICK] Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents. Has bacteriolytic activity against M.luteus.<ref>PMID:22044478</ref> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ri/1ri8_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ri8 ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
A central paradigm in immunology states that successful generation of high affinity antibodies necessitates an immense primary repertoire of antigen-combining sites. Much of the diversity of this repertoire is provided by varying one antigen binding loop, created by inserting randomly a D (diversity) gene out of a small pool between the V and J genes. It is therefore assumed that any particular D-encoded region surrounded by different V and J regions adopts a different conformation. We have solved the structure of two lysozyme-specific variable domains of heavy-chain antibodies isolated from two strictly unrelated dromedaries. These antibodies recombined identical D gene sequences to different V and J precursors with significant variance in their V(D)J junctions. Despite these large differences, the D-encoded loop segments adopt remarkably identical architectures, thus directing the antibodies toward identical epitopes. Furthermore, a striking convergent maturation process occurred in the V region, adapting both binders for their sub-nanomolar affinity association with lysozyme. Hence, on a structural level, humoral immunity may rely more on well developed maturation and selection systems than on the acquisition of large primary repertoires. | |||
Strong in vivo maturation compensates for structurally restricted H3 loops in antibody repertoires.,De Genst E, Silence K, Ghahroudi MA, Decanniere K, Loris R, Kinne J, Wyns L, Muyldermans S J Biol Chem. 2005 Apr 8;280(14):14114-21. Epub 2005 Jan 19. PMID:15659390<ref>PMID:15659390</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 1ri8" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Antibody 3D structures|Antibody 3D structures]] | |||
*[[Lysozyme 3D structures|Lysozyme 3D structures]] | |||
*[[3D structures of non-human antibody|3D structures of non-human antibody]] | |||
== References == | |||
<references/> | |||
== | __TOC__ | ||
</StructureSection> | |||
== | |||
< | |||
[[Category: Camelus dromedarius]] | [[Category: Camelus dromedarius]] | ||
[[Category: Gallus gallus]] | [[Category: Gallus gallus]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: | [[Category: De Genst E]] | ||
[[Category: | [[Category: Decanniere K]] | ||
[[Category: Ghahroudi | [[Category: Ghahroudi MA]] | ||
[[Category: Kinne | [[Category: Kinne J]] | ||
[[Category: Loris | [[Category: Loris R]] | ||
[[Category: Muyldermans | [[Category: Muyldermans S]] | ||
[[Category: Silence | [[Category: Silence K]] | ||
[[Category: Wyns | [[Category: Wyns L]] | ||