2qoq: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(13 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:2qoq.jpg|left|200px]]


<!--
==Human EphA3 kinase and juxtamembrane region, base, AMP-PNP bound structure==
The line below this paragraph, containing "STRUCTURE_2qoq", creates the "Structure Box" on the page.
<StructureSection load='2qoq' size='340' side='right'caption='[[2qoq]], [[Resolution|resolution]] 1.60&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[2qoq]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2QOQ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2QOQ FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.6&#8491;</td></tr>
-->
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ANP:PHOSPHOAMINOPHOSPHONIC+ACID-ADENYLATE+ESTER'>ANP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=PTR:O-PHOSPHOTYROSINE'>PTR</scene></td></tr>
{{STRUCTURE_2qoq|  PDB=2qoq  |  SCENE= }}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2qoq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2qoq OCA], [https://pdbe.org/2qoq PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2qoq RCSB], [https://www.ebi.ac.uk/pdbsum/2qoq PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2qoq ProSAT]</span></td></tr>
</table>
== Disease ==
[https://www.uniprot.org/uniprot/EPHA3_HUMAN EPHA3_HUMAN] Defects in EPHA3 may be a cause of colorectal cancer (CRC) [MIM:[https://omim.org/entry/114500 114500].
== Function ==
[https://www.uniprot.org/uniprot/EPHA3_HUMAN EPHA3_HUMAN] Receptor tyrosine kinase which binds promiscuously membrane-bound ephrin family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Highly promiscuous for ephrin-A ligands it binds preferentially EFNA5. Upon activation by EFNA5 regulates cell-cell adhesion, cytoskeletal organization and cell migration. Plays a role in cardiac cells migration and differentiation and regulates the formation of the atrioventricular canal and septum during development probably through activation by EFNA1. Involved in the retinotectal mapping of neurons. May also control the segregation but not the guidance of motor and sensory axons during neuromuscular circuit development.<ref>PMID:11870224</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/qo/2qoq_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2qoq ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Ephrin receptors (Eph) affect cell shape and movement, unlike other receptor tyrosine kinases that directly affect proliferative pathways. The kinase domain of EphA3 is activated by ephrin binding and receptor oligomerization. This activation is associated with two tyrosines in the juxtamembrane region; these tyrosines are sites of autophosphorylation and interact with the active site of the kinase to modulate activity. This allosteric event has important implications both in terms of understanding signal transduction pathways mediated by Eph kinases as well as discovering specific therapeutic ligands for receptor kinases. In order to provide further details of the molecular mechanism through which the unphosphorylated juxtamembrane region blocks catalysis, we studied wild-type and site-specific mutants in detail. High-resolution structures of multiple states of EphA3 kinase with and without the juxtamembrane segment allowed us to map the coupled pathway of residues that connect the juxtamembrane segment, the activation loop, and the catalytic residues of the kinase domain. This highly conserved set of residues likely delineates a molecular recognition pathway for most of the Eph RTKs, helping to characterize the dynamic nature of these physiologically important enzymes.


'''Human EphA3 kinase and juxtamembrane region, base, AMP-PNP bound structure'''
Autoregulation by the juxtamembrane region of the human ephrin receptor tyrosine kinase A3 (EphA3).,Davis TL, Walker JR, Loppnau P, Butler-Cole C, Allali-Hassani A, Dhe-Paganon S Structure. 2008 Jun;16(6):873-84. PMID:18547520<ref>PMID:18547520</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 2qoq" style="background-color:#fffaf0;"></div>


==About this Structure==
==See Also==
2QOQ is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2QOQ OCA].
*[[Ephrin receptor 3D structures|Ephrin receptor 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Receptor protein-tyrosine kinase]]
[[Category: Large Structures]]
[[Category: Single protein]]
[[Category: Allali-Hassani A]]
[[Category: Allali-Hassani, A.]]
[[Category: Arrowsmith CH]]
[[Category: Arrowsmith, C H.]]
[[Category: Bochkarev A]]
[[Category: Bochkarev, A.]]
[[Category: Butler-Cole C]]
[[Category: Butler-Cole, C.]]
[[Category: Davis T]]
[[Category: Davis, T.]]
[[Category: Dhe-Paganon S]]
[[Category: Dhe-Paganon, S.]]
[[Category: Edwards AM]]
[[Category: Edwards, A M.]]
[[Category: Loppnau P]]
[[Category: Loppnau, P.]]
[[Category: Mackenzie F]]
[[Category: Mackenzie, F.]]
[[Category: Newman EM]]
[[Category: Newman, E M.]]
[[Category: Sundstrom M]]
[[Category: SGC, Structural Genomics Consortium.]]
[[Category: Walker JR]]
[[Category: Sundstrom, M.]]
[[Category: Weigelt J]]
[[Category: Walker, J R.]]
[[Category: Weigelt, J.]]
[[Category: Amp-pnp]]
[[Category: Atp-binding]]
[[Category: Juxtamembrane segment]]
[[Category: Nucleotide-binding]]
[[Category: Phosphorylation]]
[[Category: Receptor tyrosine kinase]]
[[Category: Sgc]]
[[Category: Structural genomic]]
[[Category: Structural genomics consortium]]
[[Category: Transferase]]
[[Category: Transmembrane]]
[[Category: Tyrosine-protein kinase]]
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun May  4 15:19:55 2008''

Latest revision as of 12:27, 6 November 2024

Human EphA3 kinase and juxtamembrane region, base, AMP-PNP bound structureHuman EphA3 kinase and juxtamembrane region, base, AMP-PNP bound structure

Structural highlights

2qoq is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.6Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

EPHA3_HUMAN Defects in EPHA3 may be a cause of colorectal cancer (CRC) [MIM:114500.

Function

EPHA3_HUMAN Receptor tyrosine kinase which binds promiscuously membrane-bound ephrin family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Highly promiscuous for ephrin-A ligands it binds preferentially EFNA5. Upon activation by EFNA5 regulates cell-cell adhesion, cytoskeletal organization and cell migration. Plays a role in cardiac cells migration and differentiation and regulates the formation of the atrioventricular canal and septum during development probably through activation by EFNA1. Involved in the retinotectal mapping of neurons. May also control the segregation but not the guidance of motor and sensory axons during neuromuscular circuit development.[1]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Ephrin receptors (Eph) affect cell shape and movement, unlike other receptor tyrosine kinases that directly affect proliferative pathways. The kinase domain of EphA3 is activated by ephrin binding and receptor oligomerization. This activation is associated with two tyrosines in the juxtamembrane region; these tyrosines are sites of autophosphorylation and interact with the active site of the kinase to modulate activity. This allosteric event has important implications both in terms of understanding signal transduction pathways mediated by Eph kinases as well as discovering specific therapeutic ligands for receptor kinases. In order to provide further details of the molecular mechanism through which the unphosphorylated juxtamembrane region blocks catalysis, we studied wild-type and site-specific mutants in detail. High-resolution structures of multiple states of EphA3 kinase with and without the juxtamembrane segment allowed us to map the coupled pathway of residues that connect the juxtamembrane segment, the activation loop, and the catalytic residues of the kinase domain. This highly conserved set of residues likely delineates a molecular recognition pathway for most of the Eph RTKs, helping to characterize the dynamic nature of these physiologically important enzymes.

Autoregulation by the juxtamembrane region of the human ephrin receptor tyrosine kinase A3 (EphA3).,Davis TL, Walker JR, Loppnau P, Butler-Cole C, Allali-Hassani A, Dhe-Paganon S Structure. 2008 Jun;16(6):873-84. PMID:18547520[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Lawrenson ID, Wimmer-Kleikamp SH, Lock P, Schoenwaelder SM, Down M, Boyd AW, Alewood PF, Lackmann M. Ephrin-A5 induces rounding, blebbing and de-adhesion of EphA3-expressing 293T and melanoma cells by CrkII and Rho-mediated signalling. J Cell Sci. 2002 Mar 1;115(Pt 5):1059-72. PMID:11870224
  2. Davis TL, Walker JR, Loppnau P, Butler-Cole C, Allali-Hassani A, Dhe-Paganon S. Autoregulation by the juxtamembrane region of the human ephrin receptor tyrosine kinase A3 (EphA3). Structure. 2008 Jun;16(6):873-84. PMID:18547520 doi:http://dx.doi.org/10.1016/j.str.2008.03.008

2qoq, resolution 1.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA