2a9u: Difference between revisions
No edit summary |
No edit summary |
||
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Structure of the N-terminal domain of Human Ubiquitin carboxyl-terminal hydrolase 8 (USP8)== | ==Structure of the N-terminal domain of Human Ubiquitin carboxyl-terminal hydrolase 8 (USP8)== | ||
<StructureSection load='2a9u' size='340' side='right' caption='[[2a9u]], [[Resolution|resolution]] 2.10Å' scene=''> | <StructureSection load='2a9u' size='340' side='right'caption='[[2a9u]], [[Resolution|resolution]] 2.10Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2a9u]] is a 2 chain structure with sequence from [ | <table><tr><td colspan='2'>[[2a9u]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2A9U OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2A9U FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.1Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | |||
<tr id=' | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2a9u FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2a9u OCA], [https://pdbe.org/2a9u PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2a9u RCSB], [https://www.ebi.ac.uk/pdbsum/2a9u PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2a9u ProSAT]</span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | |||
</table> | </table> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/UBP8_HUMAN UBP8_HUMAN] Hydrolase that can remove conjugated ubiquitin from proteins and therefore plays an important regulatory role at the level of protein turnover by preventing degradation. Converts both 'Lys-48' an 'Lys-63'-linked ubiquitin chains. Catalytic activity is enhanced in the M phase. Involved in cell proliferation. Required to enter into S phase in response to serum stimulation. May regulate T-cell anergy mediated by RNF128 via the formation of a complex containing RNF128 and OTUB1. Probably regulates the stability of STAM2 and RASGRF1. Regulates endosomal ubiquitin dynamics, cargo sorting, membrane traffic at early endosomes, and maintenance of ESCRT-0 stability. The level of protein ubiquitination on endosomes is essential for maintaining the morphology of the organelle. Deubiquitinates EPS15 and controles tyrosine kinase stability. Removes conjugated ubiquitin from EGFR thus regulating EGFR degradation and downstream MAPK signaling. Involved in acrosome biogenesis through interaction with the spermatid ESCRT-0 complex and microtubules. Deubiquitinates BIRC6/bruce and KIF23/MKLP1.<ref>PMID:9628861</ref> <ref>PMID:16520378</ref> <ref>PMID:17711858</ref> <ref>PMID:18329369</ref> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Check<jmol> | Check<jmol> | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/a9/2a9u_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/a9/2a9u_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
Line 31: | Line 31: | ||
==See Also== | ==See Also== | ||
*[[Thioesterase|Thioesterase]] | *[[Thioesterase 3D structures|Thioesterase 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Homo sapiens]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Arrowsmith | [[Category: Arrowsmith C]] | ||
[[Category: Avvakumov | [[Category: Avvakumov GV]] | ||
[[Category: Bochkarev | [[Category: Bochkarev A]] | ||
[[Category: Dhe-Paganon | [[Category: Dhe-Paganon S]] | ||
[[Category: Edwards | [[Category: Edwards E]] | ||
[[Category: Mackenzie | [[Category: Mackenzie F]] | ||
[[Category: Newman | [[Category: Newman EM]] | ||
[[Category: Sundstrom M]] | |||
[[Category: Sundstrom | [[Category: Walker JR]] | ||
[[Category: Walker | [[Category: Weigelt J]] | ||
[[Category: Weigelt | [[Category: Xue S]] | ||
[[Category: Xue | |||
Latest revision as of 10:48, 30 October 2024
Structure of the N-terminal domain of Human Ubiquitin carboxyl-terminal hydrolase 8 (USP8)Structure of the N-terminal domain of Human Ubiquitin carboxyl-terminal hydrolase 8 (USP8)
Structural highlights
FunctionUBP8_HUMAN Hydrolase that can remove conjugated ubiquitin from proteins and therefore plays an important regulatory role at the level of protein turnover by preventing degradation. Converts both 'Lys-48' an 'Lys-63'-linked ubiquitin chains. Catalytic activity is enhanced in the M phase. Involved in cell proliferation. Required to enter into S phase in response to serum stimulation. May regulate T-cell anergy mediated by RNF128 via the formation of a complex containing RNF128 and OTUB1. Probably regulates the stability of STAM2 and RASGRF1. Regulates endosomal ubiquitin dynamics, cargo sorting, membrane traffic at early endosomes, and maintenance of ESCRT-0 stability. The level of protein ubiquitination on endosomes is essential for maintaining the morphology of the organelle. Deubiquitinates EPS15 and controles tyrosine kinase stability. Removes conjugated ubiquitin from EGFR thus regulating EGFR degradation and downstream MAPK signaling. Involved in acrosome biogenesis through interaction with the spermatid ESCRT-0 complex and microtubules. Deubiquitinates BIRC6/bruce and KIF23/MKLP1.[1] [2] [3] [4] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedUbiquitin-specific protease 8 (USP8) hydrolyzes mono and polyubiquitylated targets such as epidermal growth factor receptors and is involved in clathrin-mediated internalization. In 1182 residues, USP8 contains multiple domains, including coiled-coil, rhodanese, and catalytic domains. We report the first high-resolution crystal structures of these domains and discuss their implications for USP8 function. The amino-terminal domain is a homodimer with a novel fold. It is composed of two five-helix bundles, where the first helices are swapped, and carboxyl-terminal helices are extended in an antiparallel fashion. The structure of the rhodanese domain, determined in complex with the E3 ligase NRDP1, reveals the canonical rhodanese fold but with a distorted primordial active site. The USP8 recognition domain of NRDP1 has a novel protein fold that interacts with a conserved peptide loop of the rhodanese domain. A consensus sequence of this loop is found in other NRDP1 targets, suggesting a common mode of interaction. The structure of the carboxyl-terminal catalytic domain of USP8 exhibits the conserved tripartite architecture but shows unique traits. Notably, the active site, including the ubiquitin binding pocket, is in a closed conformation, incompatible with substrate binding. The presence of a zinc ribbon subdomain near the ubiquitin binding site further suggests a polyubiquitin-specific binding site and a mechanism for substrate induced conformational changes. Amino-terminal dimerization, NRDP1-rhodanese interaction, and inhibited catalytic domain conformation of the ubiquitin-specific protease 8 (USP8).,Avvakumov GV, Walker JR, Xue S, Finerty PJ Jr, Mackenzie F, Newman EM, Dhe-Paganon S J Biol Chem. 2006 Dec 8;281(49):38061-70. Epub 2006 Oct 11. PMID:17035239[5] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|