1zeh: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
==STRUCTURE OF INSULIN==
==STRUCTURE OF INSULIN==
<StructureSection load='1zeh' size='340' side='right' caption='[[1zeh]], [[Resolution|resolution]] 1.50&Aring;' scene=''>
<StructureSection load='1zeh' size='340' side='right'caption='[[1zeh]], [[Resolution|resolution]] 1.50&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1zeh]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1ZEH OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1ZEH FirstGlance]. <br>
<table><tr><td colspan='2'>[[1zeh]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1ZEH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1ZEH FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=CRS:M-CRESOL'>CRS</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.5&#8491;</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1zeh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1zeh OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1zeh RCSB], [http://www.ebi.ac.uk/pdbsum/1zeh PDBsum]</span></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=CRS:M-CRESOL'>CRS</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1zeh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1zeh OCA], [https://pdbe.org/1zeh PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1zeh RCSB], [https://www.ebi.ac.uk/pdbsum/1zeh PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1zeh ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
[[http://www.uniprot.org/uniprot/INS_HUMAN INS_HUMAN]] Defects in INS are the cause of familial hyperproinsulinemia (FHPRI) [MIM:[http://omim.org/entry/176730 176730]].<ref>PMID:3470784</ref> <ref>PMID:2196279</ref> <ref>PMID:4019786</ref> <ref>PMID:1601997</ref>  Defects in INS are a cause of diabetes mellitus insulin-dependent type 2 (IDDM2) [MIM:[http://omim.org/entry/125852 125852]]. IDDM2 is a multifactorial disorder of glucose homeostasis that is characterized by susceptibility to ketoacidosis in the absence of insulin therapy. Clinical fetaures are polydipsia, polyphagia and polyuria which result from hyperglycemia-induced osmotic diuresis and secondary thirst. These derangements result in long-term complications that affect the eyes, kidneys, nerves, and blood vessels.<ref>PMID:18192540</ref>  Defects in INS are a cause of diabetes mellitus permanent neonatal (PNDM) [MIM:[http://omim.org/entry/606176 606176]]. PNDM is a rare form of diabetes distinct from childhood-onset autoimmune diabetes mellitus type 1. It is characterized by insulin-requiring hyperglycemia that is diagnosed within the first months of life. Permanent neonatal diabetes requires lifelong therapy.<ref>PMID:17855560</ref> <ref>PMID:18162506</ref>  Defects in INS are a cause of maturity-onset diabetes of the young type 10 (MODY10) [MIM:[http://omim.org/entry/613370 613370]]. MODY10 is a form of diabetes that is characterized by an autosomal dominant mode of inheritance, onset in childhood or early adulthood (usually before 25 years of age), a primary defect in insulin secretion and frequent insulin-independence at the beginning of the disease.<ref>PMID:18192540</ref> <ref>PMID:18162506</ref> <ref>PMID:20226046</ref>
[https://www.uniprot.org/uniprot/INS_HUMAN INS_HUMAN] Defects in INS are the cause of familial hyperproinsulinemia (FHPRI) [MIM:[https://omim.org/entry/176730 176730].<ref>PMID:3470784</ref> <ref>PMID:2196279</ref> <ref>PMID:4019786</ref> <ref>PMID:1601997</ref>  Defects in INS are a cause of diabetes mellitus insulin-dependent type 2 (IDDM2) [MIM:[https://omim.org/entry/125852 125852]. IDDM2 is a multifactorial disorder of glucose homeostasis that is characterized by susceptibility to ketoacidosis in the absence of insulin therapy. Clinical fetaures are polydipsia, polyphagia and polyuria which result from hyperglycemia-induced osmotic diuresis and secondary thirst. These derangements result in long-term complications that affect the eyes, kidneys, nerves, and blood vessels.<ref>PMID:18192540</ref>  Defects in INS are a cause of diabetes mellitus permanent neonatal (PNDM) [MIM:[https://omim.org/entry/606176 606176]. PNDM is a rare form of diabetes distinct from childhood-onset autoimmune diabetes mellitus type 1. It is characterized by insulin-requiring hyperglycemia that is diagnosed within the first months of life. Permanent neonatal diabetes requires lifelong therapy.<ref>PMID:17855560</ref> <ref>PMID:18162506</ref>  Defects in INS are a cause of maturity-onset diabetes of the young type 10 (MODY10) [MIM:[https://omim.org/entry/613370 613370]. MODY10 is a form of diabetes that is characterized by an autosomal dominant mode of inheritance, onset in childhood or early adulthood (usually before 25 years of age), a primary defect in insulin secretion and frequent insulin-independence at the beginning of the disease.<ref>PMID:18192540</ref> <ref>PMID:18162506</ref> <ref>PMID:20226046</ref>  
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/INS_HUMAN INS_HUMAN]] Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver.  
[https://www.uniprot.org/uniprot/INS_HUMAN INS_HUMAN] Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver.
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
Check<jmol>
   <jmolCheckbox>
   <jmolCheckbox>
     <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ze/1zeh_consurf.spt"</scriptWhenChecked>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ze/1zeh_consurf.spt"</scriptWhenChecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1zeh ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
Line 28: Line 30:
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
</div>
<div class="pdbe-citations 1zeh" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
*[[Molecular Playground/Insulin|Molecular Playground/Insulin]]
*[[Insulin 3D Structures|Insulin 3D Structures]]
== References ==
== References ==
<references/>
<references/>
Line 36: Line 39:
</StructureSection>
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Antson, A A]]
[[Category: Large Structures]]
[[Category: Clarkson, J M]]
[[Category: Antson AA]]
[[Category: Dodson, G G]]
[[Category: Clarkson JM]]
[[Category: Edwards, E J]]
[[Category: Dodson GG]]
[[Category: Whittingham, J L]]
[[Category: Edwards EJ]]
[[Category: Chemical activity]]
[[Category: Whittingham JL]]
[[Category: Cross-link]]
[[Category: Diabetes]]
[[Category: Glucose metabolism]]
[[Category: Hormone]]
[[Category: Insulin mutant]]
[[Category: Metabolic role]]

Latest revision as of 03:44, 21 November 2024

STRUCTURE OF INSULINSTRUCTURE OF INSULIN

Structural highlights

1zeh is a 4 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.5Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

INS_HUMAN Defects in INS are the cause of familial hyperproinsulinemia (FHPRI) [MIM:176730.[1] [2] [3] [4] Defects in INS are a cause of diabetes mellitus insulin-dependent type 2 (IDDM2) [MIM:125852. IDDM2 is a multifactorial disorder of glucose homeostasis that is characterized by susceptibility to ketoacidosis in the absence of insulin therapy. Clinical fetaures are polydipsia, polyphagia and polyuria which result from hyperglycemia-induced osmotic diuresis and secondary thirst. These derangements result in long-term complications that affect the eyes, kidneys, nerves, and blood vessels.[5] Defects in INS are a cause of diabetes mellitus permanent neonatal (PNDM) [MIM:606176. PNDM is a rare form of diabetes distinct from childhood-onset autoimmune diabetes mellitus type 1. It is characterized by insulin-requiring hyperglycemia that is diagnosed within the first months of life. Permanent neonatal diabetes requires lifelong therapy.[6] [7] Defects in INS are a cause of maturity-onset diabetes of the young type 10 (MODY10) [MIM:613370. MODY10 is a form of diabetes that is characterized by an autosomal dominant mode of inheritance, onset in childhood or early adulthood (usually before 25 years of age), a primary defect in insulin secretion and frequent insulin-independence at the beginning of the disease.[8] [9] [10]

Function

INS_HUMAN Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Insulin's natural tendency to form dimers and hexamers is significantly reduced in a mutant insulin B28 Pro --> Asp, which has been designed as a monomeric, rapid-acting hormone for therapeutic purposes. This molecule can be induced to form zinc hexamers in the presence of small phenolic derivatives which are routinely used as antimicrobial agents in insulin preparations. Two structures of B28 Asp insulin have been determined from crystals grown in the presence of phenol and m-cresol. In these crystals, insulin exists as R6 zinc hexamers containing a number of phenol or m-cresol molecules associated with aromatic side chains at the dimer-dimer interfaces. At the monomer-monomer interfaces, the B28 Pro --> Asp mutation leads to increased conformational flexibility in the B chain C termini, resulting in the loss of important intermolecular van der Waals contacts, thus explaining the monomeric character of B28 Asp insulin. The structure of a cross-linked derivative of B28 Asp insulin, containing an Ala-Lys dipeptide linker between residues B30 Ala and A1 Gly, has also determined. This forms an R6 zinc hexamer containing several m-cresol molecules. Of particular interest in this structure are two m-cresol molecules whose binding disrupted the beta-strand in one of the dimers. This observation suggests that the cross-link introduces mechanical strain on the B chain C terminus, thereby weakening the monomer-monomer interactions.

Interactions of phenol and m-cresol in the insulin hexamer, and their effect on the association properties of B28 pro --> Asp insulin analogues.,Whittingham JL, Edwards DJ, Antson AA, Clarkson JM, Dodson GG Biochemistry. 1998 Aug 18;37(33):11516-23. PMID:9708987[11]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Chan SJ, Seino S, Gruppuso PA, Schwartz R, Steiner DF. A mutation in the B chain coding region is associated with impaired proinsulin conversion in a family with hyperproinsulinemia. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2194-7. PMID:3470784
  2. Barbetti F, Raben N, Kadowaki T, Cama A, Accili D, Gabbay KH, Merenich JA, Taylor SI, Roth J. Two unrelated patients with familial hyperproinsulinemia due to a mutation substituting histidine for arginine at position 65 in the proinsulin molecule: identification of the mutation by direct sequencing of genomic deoxyribonucleic acid amplified by polymerase chain reaction. J Clin Endocrinol Metab. 1990 Jul;71(1):164-9. PMID:2196279
  3. Shibasaki Y, Kawakami T, Kanazawa Y, Akanuma Y, Takaku F. Posttranslational cleavage of proinsulin is blocked by a point mutation in familial hyperproinsulinemia. J Clin Invest. 1985 Jul;76(1):378-80. PMID:4019786 doi:http://dx.doi.org/10.1172/JCI111973
  4. Yano H, Kitano N, Morimoto M, Polonsky KS, Imura H, Seino Y. A novel point mutation in the human insulin gene giving rise to hyperproinsulinemia (proinsulin Kyoto). J Clin Invest. 1992 Jun;89(6):1902-7. PMID:1601997 doi:http://dx.doi.org/10.1172/JCI115795
  5. Molven A, Ringdal M, Nordbo AM, Raeder H, Stoy J, Lipkind GM, Steiner DF, Philipson LH, Bergmann I, Aarskog D, Undlien DE, Joner G, Sovik O, Bell GI, Njolstad PR. Mutations in the insulin gene can cause MODY and autoantibody-negative type 1 diabetes. Diabetes. 2008 Apr;57(4):1131-5. doi: 10.2337/db07-1467. Epub 2008 Jan 11. PMID:18192540 doi:10.2337/db07-1467
  6. Stoy J, Edghill EL, Flanagan SE, Ye H, Paz VP, Pluzhnikov A, Below JE, Hayes MG, Cox NJ, Lipkind GM, Lipton RB, Greeley SA, Patch AM, Ellard S, Steiner DF, Hattersley AT, Philipson LH, Bell GI. Insulin gene mutations as a cause of permanent neonatal diabetes. Proc Natl Acad Sci U S A. 2007 Sep 18;104(38):15040-4. Epub 2007 Sep 12. PMID:17855560 doi:10.1073/pnas.0707291104
  7. Edghill EL, Flanagan SE, Patch AM, Boustred C, Parrish A, Shields B, Shepherd MH, Hussain K, Kapoor RR, Malecki M, MacDonald MJ, Stoy J, Steiner DF, Philipson LH, Bell GI, Hattersley AT, Ellard S. Insulin mutation screening in 1,044 patients with diabetes: mutations in the INS gene are a common cause of neonatal diabetes but a rare cause of diabetes diagnosed in childhood or adulthood. Diabetes. 2008 Apr;57(4):1034-42. Epub 2007 Dec 27. PMID:18162506 doi:10.2337/db07-1405
  8. Molven A, Ringdal M, Nordbo AM, Raeder H, Stoy J, Lipkind GM, Steiner DF, Philipson LH, Bergmann I, Aarskog D, Undlien DE, Joner G, Sovik O, Bell GI, Njolstad PR. Mutations in the insulin gene can cause MODY and autoantibody-negative type 1 diabetes. Diabetes. 2008 Apr;57(4):1131-5. doi: 10.2337/db07-1467. Epub 2008 Jan 11. PMID:18192540 doi:10.2337/db07-1467
  9. Edghill EL, Flanagan SE, Patch AM, Boustred C, Parrish A, Shields B, Shepherd MH, Hussain K, Kapoor RR, Malecki M, MacDonald MJ, Stoy J, Steiner DF, Philipson LH, Bell GI, Hattersley AT, Ellard S. Insulin mutation screening in 1,044 patients with diabetes: mutations in the INS gene are a common cause of neonatal diabetes but a rare cause of diabetes diagnosed in childhood or adulthood. Diabetes. 2008 Apr;57(4):1034-42. Epub 2007 Dec 27. PMID:18162506 doi:10.2337/db07-1405
  10. Boesgaard TW, Pruhova S, Andersson EA, Cinek O, Obermannova B, Lauenborg J, Damm P, Bergholdt R, Pociot F, Pisinger C, Barbetti F, Lebl J, Pedersen O, Hansen T. Further evidence that mutations in INS can be a rare cause of Maturity-Onset Diabetes of the Young (MODY). BMC Med Genet. 2010 Mar 12;11:42. doi: 10.1186/1471-2350-11-42. PMID:20226046 doi:10.1186/1471-2350-11-42
  11. Whittingham JL, Edwards DJ, Antson AA, Clarkson JM, Dodson GG. Interactions of phenol and m-cresol in the insulin hexamer, and their effect on the association properties of B28 pro --> Asp insulin analogues. Biochemistry. 1998 Aug 18;37(33):11516-23. PMID:9708987 doi:10.1021/bi980807s

1zeh, resolution 1.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA