1mp8: Difference between revisions
No edit summary |
No edit summary |
||
(17 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Crystal structure of Focal Adhesion Kinase (FAK)== | |||
<StructureSection load='1mp8' size='340' side='right'caption='[[1mp8]], [[Resolution|resolution]] 1.60Å' scene=''> | |||
| | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1mp8]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1MP8 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1MP8 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.6Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1mp8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1mp8 OCA], [https://pdbe.org/1mp8 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1mp8 RCSB], [https://www.ebi.ac.uk/pdbsum/1mp8 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1mp8 ProSAT]</span></td></tr> | |||
</table> | |||
== Disease == | |||
[https://www.uniprot.org/uniprot/FAK1_HUMAN FAK1_HUMAN] Note=Aberrant PTK2/FAK1 expression may play a role in cancer cell proliferation, migration and invasion, in tumor formation and metastasis. PTK2/FAK1 overexpression is seen in many types of cancer.<ref>PMID:11980671</ref> <ref>PMID:18006843</ref> <ref>PMID:17395594</ref> <ref>PMID:17431114</ref> <ref>PMID:19147981</ref> <ref>PMID:20495381</ref> <ref>PMID:16919435</ref> <ref>PMID:18677107</ref> <ref>PMID:19224453</ref> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/FAK1_HUMAN FAK1_HUMAN] Non-receptor protein-tyrosine kinase that plays an essential role in regulating cell migration, adhesion, spreading, reorganization of the actin cytoskeleton, formation and disassembly of focal adhesions and cell protrusions, cell cycle progression, cell proliferation and apoptosis. Required for early embryonic development and placenta development. Required for embryonic angiogenesis, normal cardiomyocyte migration and proliferation, and normal heart development. Regulates axon growth and neuronal cell migration, axon branching and synapse formation; required for normal development of the nervous system. Plays a role in osteogenesis and differentiation of osteoblasts. Functions in integrin signal transduction, but also in signaling downstream of numerous growth factor receptors, G-protein coupled receptors (GPCR), EPHA2, netrin receptors and LDL receptors. Forms multisubunit signaling complexes with SRC and SRC family members upon activation; this leads to the phosphorylation of additional tyrosine residues, creating binding sites for scaffold proteins, effectors and substrates. Regulates numerous signaling pathways. Promotes activation of phosphatidylinositol 3-kinase and the AKT1 signaling cascade. Promotes activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling cascade. Promotes localized and transient activation of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and thereby modulates the activity of Rho family GTPases. Signaling via CAS family members mediates activation of RAC1. Recruits the ubiquitin ligase MDM2 to P53/TP53 in the nucleus, and thereby regulates P53/TP53 activity, P53/TP53 ubiquitination and proteasomal degradation. Phosphorylates SRC; this increases SRC kinase activity. Phosphorylates ACTN1, ARHGEF7, GRB7, RET and WASL. Promotes phosphorylation of PXN and STAT1; most likely PXN and STAT1 are phosphorylated by a SRC family kinase that is recruited to autophosphorylated PTK2/FAK1, rather than by PTK2/FAK1 itself. Promotes phosphorylation of BCAR1; GIT2 and SHC1; this requires both SRC and PTK2/FAK1. Promotes phosphorylation of BMX and PIK3R1. Isoform 6 (FRNK) does not contain a kinase domain and inhibits PTK2/FAK1 phosphorylation and signaling. Its enhanced expression can attenuate the nuclear accumulation of LPXN and limit its ability to enhance serum response factor (SRF)-dependent gene transcription.<ref>PMID:10655584</ref> <ref>PMID:11331870</ref> <ref>PMID:11980671</ref> <ref>PMID:15166238</ref> <ref>PMID:15561106</ref> <ref>PMID:15895076</ref> <ref>PMID:18006843</ref> <ref>PMID:17395594</ref> <ref>PMID:16927379</ref> <ref>PMID:17431114</ref> <ref>PMID:18497331</ref> <ref>PMID:18292575</ref> <ref>PMID:18256281</ref> <ref>PMID:18206965</ref> <ref>PMID:19138410</ref> <ref>PMID:19147981</ref> <ref>PMID:20495381</ref> <ref>PMID:20109444</ref> <ref>PMID:21454698</ref> <ref>PMID:16919435</ref> <ref>PMID:18677107</ref> <ref>PMID:19224453</ref> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/mp/1mp8_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1mp8 ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Protein kinases are important drug targets in human cancers, inflammation, and metabolic diseases. This report presents the structures of kinase domains for three cancer-associated protein kinases: ephrin receptor A2 (EphA2), focal adhesion kinase (FAK), and Aurora-A. The expression profiles of EphA2, FAK, and Aurora-A in carcinomas suggest that inhibitors of these kinases may have inherent potential as therapeutic agents. The structures were determined from crystals grown in nanovolume droplets, which produced high-resolution diffraction data at 1.7, 1.9, and 2.3 A for FAK, Aurora-A, and EphA2, respectively. The FAK and Aurora-A structures are the first determined within two unique subfamilies of human kinases, and all three structures provide new insights into kinase regulation and the design of selective inhibitors. | |||
Structures of the cancer-related Aurora-A, FAK, and EphA2 protein kinases from nanovolume crystallography.,Nowakowski J, Cronin CN, McRee DE, Knuth MW, Nelson CG, Pavletich NP, Rogers J, Sang BC, Scheibe DN, Swanson RV, Thompson DA Structure. 2002 Dec;10(12):1659-67. PMID:12467573<ref>PMID:12467573</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 1mp8" style="background-color:#fffaf0;"></div> | |||
== | ==See Also== | ||
*[[Focal adhesion kinase 3D structures|Focal adhesion kinase 3D structures]] | |||
== References == | |||
== | <references/> | ||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Cronin CN]] | |||
[[Category: Cronin | [[Category: Knuth MW]] | ||
[[Category: Knuth | [[Category: McRee DE]] | ||
[[Category: McRee | [[Category: Nelson CG]] | ||
[[Category: Nelson | [[Category: Nowakowski J]] | ||
[[Category: Nowakowski | [[Category: Pavletich NP]] | ||
[[Category: Pavletich | [[Category: Rodgers J]] | ||
[[Category: Rodgers | [[Category: Sang B-C]] | ||
[[Category: Sang | [[Category: Scheibe DN]] | ||
[[Category: Scheibe | [[Category: Swanson RV]] | ||
[[Category: Swanson | [[Category: Thompson DA]] | ||
[[Category: Thompson | |||
Latest revision as of 11:38, 6 November 2024
Crystal structure of Focal Adhesion Kinase (FAK)Crystal structure of Focal Adhesion Kinase (FAK)
Structural highlights
DiseaseFAK1_HUMAN Note=Aberrant PTK2/FAK1 expression may play a role in cancer cell proliferation, migration and invasion, in tumor formation and metastasis. PTK2/FAK1 overexpression is seen in many types of cancer.[1] [2] [3] [4] [5] [6] [7] [8] [9] FunctionFAK1_HUMAN Non-receptor protein-tyrosine kinase that plays an essential role in regulating cell migration, adhesion, spreading, reorganization of the actin cytoskeleton, formation and disassembly of focal adhesions and cell protrusions, cell cycle progression, cell proliferation and apoptosis. Required for early embryonic development and placenta development. Required for embryonic angiogenesis, normal cardiomyocyte migration and proliferation, and normal heart development. Regulates axon growth and neuronal cell migration, axon branching and synapse formation; required for normal development of the nervous system. Plays a role in osteogenesis and differentiation of osteoblasts. Functions in integrin signal transduction, but also in signaling downstream of numerous growth factor receptors, G-protein coupled receptors (GPCR), EPHA2, netrin receptors and LDL receptors. Forms multisubunit signaling complexes with SRC and SRC family members upon activation; this leads to the phosphorylation of additional tyrosine residues, creating binding sites for scaffold proteins, effectors and substrates. Regulates numerous signaling pathways. Promotes activation of phosphatidylinositol 3-kinase and the AKT1 signaling cascade. Promotes activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling cascade. Promotes localized and transient activation of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and thereby modulates the activity of Rho family GTPases. Signaling via CAS family members mediates activation of RAC1. Recruits the ubiquitin ligase MDM2 to P53/TP53 in the nucleus, and thereby regulates P53/TP53 activity, P53/TP53 ubiquitination and proteasomal degradation. Phosphorylates SRC; this increases SRC kinase activity. Phosphorylates ACTN1, ARHGEF7, GRB7, RET and WASL. Promotes phosphorylation of PXN and STAT1; most likely PXN and STAT1 are phosphorylated by a SRC family kinase that is recruited to autophosphorylated PTK2/FAK1, rather than by PTK2/FAK1 itself. Promotes phosphorylation of BCAR1; GIT2 and SHC1; this requires both SRC and PTK2/FAK1. Promotes phosphorylation of BMX and PIK3R1. Isoform 6 (FRNK) does not contain a kinase domain and inhibits PTK2/FAK1 phosphorylation and signaling. Its enhanced expression can attenuate the nuclear accumulation of LPXN and limit its ability to enhance serum response factor (SRF)-dependent gene transcription.[10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedProtein kinases are important drug targets in human cancers, inflammation, and metabolic diseases. This report presents the structures of kinase domains for three cancer-associated protein kinases: ephrin receptor A2 (EphA2), focal adhesion kinase (FAK), and Aurora-A. The expression profiles of EphA2, FAK, and Aurora-A in carcinomas suggest that inhibitors of these kinases may have inherent potential as therapeutic agents. The structures were determined from crystals grown in nanovolume droplets, which produced high-resolution diffraction data at 1.7, 1.9, and 2.3 A for FAK, Aurora-A, and EphA2, respectively. The FAK and Aurora-A structures are the first determined within two unique subfamilies of human kinases, and all three structures provide new insights into kinase regulation and the design of selective inhibitors. Structures of the cancer-related Aurora-A, FAK, and EphA2 protein kinases from nanovolume crystallography.,Nowakowski J, Cronin CN, McRee DE, Knuth MW, Nelson CG, Pavletich NP, Rogers J, Sang BC, Scheibe DN, Swanson RV, Thompson DA Structure. 2002 Dec;10(12):1659-67. PMID:12467573[32] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|