1j2f: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Seed}}
[[Image:1j2f.png|left|200px]]


<!--
==X-ray crystal structure of IRF-3 and its functional implications==
The line below this paragraph, containing "STRUCTURE_1j2f", creates the "Structure Box" on the page.
<StructureSection load='1j2f' size='340' side='right'caption='[[1j2f]], [[Resolution|resolution]] 2.30&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)  
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[1j2f]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1J2F OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1J2F FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.3&#8491;</td></tr>
-->
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1j2f FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1j2f OCA], [https://pdbe.org/1j2f PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1j2f RCSB], [https://www.ebi.ac.uk/pdbsum/1j2f PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1j2f ProSAT]</span></td></tr>
{{STRUCTURE_1j2f| PDB=1j2f |  SCENE= }}
</table>
== Function ==
[https://www.uniprot.org/uniprot/IRF3_HUMAN IRF3_HUMAN] Key transcriptional regulator of type I interferon (IFN)-dependent immune responses and plays a critical role in the innate immune response against DNA and RNA viruses. Regulates the transcription of type I IFN genes (IFN-alpha and IFN-beta) and IFN-stimulated genes (ISG) by binding to an interferon-stimulated response element (ISRE) in their promoters. Acts as a more potent activator of the IFN-beta (IFNB) gene than the IFN-alpha (IFNA) gene and plays a critical role in both the early and late phases of the IFNA/B gene induction. Found in an inactive form in the cytoplasm of uninfected cells and following viral infection, double-stranded RNA (dsRNA), or toll-like receptor (TLR) signaling, becomes phosphorylated by IKBKE and TBK1 kinases. This induces a conformational change, leading to its dimerization and nuclear localization and association with CREB binding protein (CREBBP) to form dsRNA-activated factor 1 (DRAF1), a complex which activates the transcription of the type I IFN and ISG genes. Can activate distinct gene expression programs in macrophages and can induce significant apoptosis in primary macrophages.
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/j2/1j2f_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1j2f ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Transcription factor IRF-3 is post-translationally activated by Toll-like receptor (TLR) signaling and has critical roles in the regulation of innate immunity. Here we present the X-ray crystal structure of the C-terminal regulatory domain of IRF-3(175-427) (IRF-3 175C) at a resolution of 2.3 A. IRF-3 175C is structurally similar to the Mad homology domain 2 of the Smad family. Structural and functional analyses reveal phosphorylation-induced IRF-3 dimerization, which generates an extensive acidic pocket responsible for binding with p300/CBP. Although TLR and Smad signaling are evolutionarily independent, our results suggest that IRF-3 originates from Smad and acquires its function downstream of TLR.


===X-ray crystal structure of IRF-3 and its functional implications===
X-ray crystal structure of IRF-3 and its functional implications.,Takahasi K, Suzuki NN, Horiuchi M, Mori M, Suhara W, Okabe Y, Fukuhara Y, Terasawa H, Akira S, Fujita T, Inagaki F Nat Struct Biol. 2003 Nov;10(11):922-7. Epub 2003 Oct 12. PMID:14555995<ref>PMID:14555995</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1j2f" style="background-color:#fffaf0;"></div>


<!--
==See Also==
The line below this paragraph, {{ABSTRACT_PUBMED_14555995}}, adds the Publication Abstract to the page
*[[Interferon regulatory factor|Interferon regulatory factor]]
(as it appears on PubMed at http://www.pubmed.gov), where 14555995 is the PubMed ID number.
== References ==
-->
<references/>
{{ABSTRACT_PUBMED_14555995}}
__TOC__
 
</StructureSection>
==About this Structure==
1J2F is a 2 chains structure of sequences from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1J2F OCA].
 
==Reference==
<ref group="xtra">PMID:14555995</ref><references group="xtra"/>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Fujita, T.]]
[[Category: Large Structures]]
[[Category: Fukuhara, Y.]]
[[Category: Fujita T]]
[[Category: Horiuchi, M.]]
[[Category: Fukuhara Y]]
[[Category: Inagaki, F.]]
[[Category: Horiuchi M]]
[[Category: Mori, M.]]
[[Category: Inagaki F]]
[[Category: Noda, N.]]
[[Category: Mori M]]
[[Category: Okabe, Y.]]
[[Category: Noda N]]
[[Category: Takahasi, K.]]
[[Category: Okabe Y]]
[[Category: Terasawa, H.]]
[[Category: Takahasi K]]
[[Category: Transcription factor]]
[[Category: Terasawa H]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Tue Feb 17 22:20:29 2009''

Latest revision as of 09:47, 30 October 2024

X-ray crystal structure of IRF-3 and its functional implicationsX-ray crystal structure of IRF-3 and its functional implications

Structural highlights

1j2f is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.3Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

IRF3_HUMAN Key transcriptional regulator of type I interferon (IFN)-dependent immune responses and plays a critical role in the innate immune response against DNA and RNA viruses. Regulates the transcription of type I IFN genes (IFN-alpha and IFN-beta) and IFN-stimulated genes (ISG) by binding to an interferon-stimulated response element (ISRE) in their promoters. Acts as a more potent activator of the IFN-beta (IFNB) gene than the IFN-alpha (IFNA) gene and plays a critical role in both the early and late phases of the IFNA/B gene induction. Found in an inactive form in the cytoplasm of uninfected cells and following viral infection, double-stranded RNA (dsRNA), or toll-like receptor (TLR) signaling, becomes phosphorylated by IKBKE and TBK1 kinases. This induces a conformational change, leading to its dimerization and nuclear localization and association with CREB binding protein (CREBBP) to form dsRNA-activated factor 1 (DRAF1), a complex which activates the transcription of the type I IFN and ISG genes. Can activate distinct gene expression programs in macrophages and can induce significant apoptosis in primary macrophages.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Transcription factor IRF-3 is post-translationally activated by Toll-like receptor (TLR) signaling and has critical roles in the regulation of innate immunity. Here we present the X-ray crystal structure of the C-terminal regulatory domain of IRF-3(175-427) (IRF-3 175C) at a resolution of 2.3 A. IRF-3 175C is structurally similar to the Mad homology domain 2 of the Smad family. Structural and functional analyses reveal phosphorylation-induced IRF-3 dimerization, which generates an extensive acidic pocket responsible for binding with p300/CBP. Although TLR and Smad signaling are evolutionarily independent, our results suggest that IRF-3 originates from Smad and acquires its function downstream of TLR.

X-ray crystal structure of IRF-3 and its functional implications.,Takahasi K, Suzuki NN, Horiuchi M, Mori M, Suhara W, Okabe Y, Fukuhara Y, Terasawa H, Akira S, Fujita T, Inagaki F Nat Struct Biol. 2003 Nov;10(11):922-7. Epub 2003 Oct 12. PMID:14555995[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Takahasi K, Suzuki NN, Horiuchi M, Mori M, Suhara W, Okabe Y, Fukuhara Y, Terasawa H, Akira S, Fujita T, Inagaki F. X-ray crystal structure of IRF-3 and its functional implications. Nat Struct Biol. 2003 Nov;10(11):922-7. Epub 2003 Oct 12. PMID:14555995 doi:10.1038/nsb1001

1j2f, resolution 2.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA