1fo2: Difference between revisions
No edit summary |
No edit summary |
||
(17 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== | ==CRYSTAL STRUCTURE OF HUMAN CLASS I ALPHA1,2-MANNOSIDASE IN COMPLEX WITH 1-DEOXYMANNOJIRIMYCIN== | ||
Endoplasmic reticulum (ER) class I alpha1,2-mannosidase (also known as ER | <StructureSection load='1fo2' size='340' side='right'caption='[[1fo2]], [[Resolution|resolution]] 2.38Å' scene=''> | ||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1fo2]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1FO2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1FO2 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.38Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=DMJ:1-DEOXYMANNOJIRIMYCIN'>DMJ</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1fo2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1fo2 OCA], [https://pdbe.org/1fo2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1fo2 RCSB], [https://www.ebi.ac.uk/pdbsum/1fo2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1fo2 ProSAT]</span></td></tr> | |||
</table> | |||
== Disease == | |||
[https://www.uniprot.org/uniprot/MA1B1_HUMAN MA1B1_HUMAN] Defects in MAN1B1 are the cause of mental retardation autosomal recessive type 15 (MRT15) [MIM:[https://omim.org/entry/614202 614202]. Mental retardation is characterized by significantly below average general intellectual functioning associated with impairments in adaptative behavior and manifested during the developmental period.<ref>PMID:21763484</ref> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/MA1B1_HUMAN MA1B1_HUMAN] Involved in glycoprotein quality control targeting of misfolded glycoproteins for degradation. It primarily trims a single alpha-1,2-linked mannose residue from Man(9)GlcNAc(2) to produce Man(8)GlcNAc(2), but at high enzyme concentrations, as found in the ER quality control compartment (ERQC), it further trims the carbohydrates to Man(5-6)GlcNAc(2).<ref>PMID:12090241</ref> <ref>PMID:18003979</ref> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/fo/1fo2_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1fo2 ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Endoplasmic reticulum (ER) class I alpha1,2-mannosidase (also known as ER alpha-mannosidase I) is a critical enzyme in the maturation of N-linked oligosaccharides and ER-associated degradation. Trimming of a single mannose residue acts as a signal to target misfolded glycoproteins for degradation by the proteasome. Crystal structures of the catalytic domain of human ER class I alpha1,2-mannosidase have been determined both in the presence and absence of the potent inhibitors kifunensine and 1-deoxymannojirimycin. Both inhibitors bind to the protein at the bottom of the active-site cavity, with the essential calcium ion coordinating the O-2' and O-3' hydroxyls and stabilizing the six-membered rings of both inhibitors in a (1)C(4) conformation. This is the first direct evidence of the role of the calcium ion. The lack of major conformational changes upon inhibitor binding and structural comparisons with the yeast alpha1, 2-mannosidase enzyme-product complex suggest that this class of inverting enzymes has a novel catalytic mechanism. The structures also provide insight into the specificity of this class of enzymes and provide a blueprint for the future design of novel inhibitors that prevent degradation of misfolded proteins in genetic diseases. | |||
Structural basis for catalysis and inhibition of N-glycan processing class I alpha 1,2-mannosidases.,Vallee F, Karaveg K, Herscovics A, Moremen KW, Howell PL J Biol Chem. 2000 Dec 29;275(52):41287-98. PMID:10995765<ref>PMID:10995765</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
[[ | <div class="pdbe-citations 1fo2" style="background-color:#fffaf0;"></div> | ||
==See Also== | |||
*[[Mannosidase 3D structures|Mannosidase 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Herscovics | [[Category: Herscovics A]] | ||
[[Category: Howell | [[Category: Howell PL]] | ||
[[Category: Karaveg | [[Category: Karaveg K]] | ||
[[Category: Moremen | [[Category: Moremen KW]] | ||
[[Category: Vallee | [[Category: Vallee F]] | ||
Latest revision as of 09:38, 30 October 2024
CRYSTAL STRUCTURE OF HUMAN CLASS I ALPHA1,2-MANNOSIDASE IN COMPLEX WITH 1-DEOXYMANNOJIRIMYCINCRYSTAL STRUCTURE OF HUMAN CLASS I ALPHA1,2-MANNOSIDASE IN COMPLEX WITH 1-DEOXYMANNOJIRIMYCIN
Structural highlights
DiseaseMA1B1_HUMAN Defects in MAN1B1 are the cause of mental retardation autosomal recessive type 15 (MRT15) [MIM:614202. Mental retardation is characterized by significantly below average general intellectual functioning associated with impairments in adaptative behavior and manifested during the developmental period.[1] FunctionMA1B1_HUMAN Involved in glycoprotein quality control targeting of misfolded glycoproteins for degradation. It primarily trims a single alpha-1,2-linked mannose residue from Man(9)GlcNAc(2) to produce Man(8)GlcNAc(2), but at high enzyme concentrations, as found in the ER quality control compartment (ERQC), it further trims the carbohydrates to Man(5-6)GlcNAc(2).[2] [3] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedEndoplasmic reticulum (ER) class I alpha1,2-mannosidase (also known as ER alpha-mannosidase I) is a critical enzyme in the maturation of N-linked oligosaccharides and ER-associated degradation. Trimming of a single mannose residue acts as a signal to target misfolded glycoproteins for degradation by the proteasome. Crystal structures of the catalytic domain of human ER class I alpha1,2-mannosidase have been determined both in the presence and absence of the potent inhibitors kifunensine and 1-deoxymannojirimycin. Both inhibitors bind to the protein at the bottom of the active-site cavity, with the essential calcium ion coordinating the O-2' and O-3' hydroxyls and stabilizing the six-membered rings of both inhibitors in a (1)C(4) conformation. This is the first direct evidence of the role of the calcium ion. The lack of major conformational changes upon inhibitor binding and structural comparisons with the yeast alpha1, 2-mannosidase enzyme-product complex suggest that this class of inverting enzymes has a novel catalytic mechanism. The structures also provide insight into the specificity of this class of enzymes and provide a blueprint for the future design of novel inhibitors that prevent degradation of misfolded proteins in genetic diseases. Structural basis for catalysis and inhibition of N-glycan processing class I alpha 1,2-mannosidases.,Vallee F, Karaveg K, Herscovics A, Moremen KW, Howell PL J Biol Chem. 2000 Dec 29;275(52):41287-98. PMID:10995765[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|