1ddj: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:


==CRYSTAL STRUCTURE OF HUMAN PLASMINOGEN CATALYTIC DOMAIN==
==CRYSTAL STRUCTURE OF HUMAN PLASMINOGEN CATALYTIC DOMAIN==
<StructureSection load='1ddj' size='340' side='right' caption='[[1ddj]], [[Resolution|resolution]] 2.00&Aring;' scene=''>
<StructureSection load='1ddj' size='340' side='right'caption='[[1ddj]], [[Resolution|resolution]] 2.00&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1ddj]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1DDJ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1DDJ FirstGlance]. <br>
<table><tr><td colspan='2'>[[1ddj]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1DDJ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1DDJ FirstGlance]. <br>
</td></tr><tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Plasmin Plasmin], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.4.21.7 3.4.21.7] </span></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2&#8491;</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1ddj FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ddj OCA], [http://pdbe.org/1ddj PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1ddj RCSB], [http://www.ebi.ac.uk/pdbsum/1ddj PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1ddj ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1ddj FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ddj OCA], [https://pdbe.org/1ddj PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1ddj RCSB], [https://www.ebi.ac.uk/pdbsum/1ddj PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1ddj ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
[[http://www.uniprot.org/uniprot/PLMN_HUMAN PLMN_HUMAN]] Defects in PLG are the cause of plasminogen deficiency (PLGD) [MIM:[http://omim.org/entry/217090 217090]]. PLGD is characterized by decreased serum plasminogen activity. Two forms of the disorder are distinguished: type 1 deficiency is additionally characterized by decreased plasminogen antigen levels and clinical symptoms, whereas type 2 deficiency, also known as dysplasminogenemia, is characterized by normal, or slightly reduced antigen levels, and absence of clinical manifestations. Plasminogen deficiency type 1 results in markedly impaired extracellular fibrinolysis and chronic mucosal pseudomembranous lesions due to subepithelial fibrin deposition and inflammation. The most common clinical manifestation of type 1 deficiency is ligneous conjunctivitis in which pseudomembranes formation on the palpebral surfaces of the eye progresses to white, yellow-white, or red thick masses with a wood-like consistency that replace the normal mucosa.<ref>PMID:1986355</ref> <ref>PMID:8392398</ref> <ref>PMID:6216475</ref> <ref>PMID:6238949</ref> <ref>PMID:1427790</ref> <ref>PMID:9242524</ref> <ref>PMID:9858247</ref> <ref>PMID:10233898</ref>
[https://www.uniprot.org/uniprot/PLMN_HUMAN PLMN_HUMAN] Defects in PLG are the cause of plasminogen deficiency (PLGD) [MIM:[https://omim.org/entry/217090 217090]. PLGD is characterized by decreased serum plasminogen activity. Two forms of the disorder are distinguished: type 1 deficiency is additionally characterized by decreased plasminogen antigen levels and clinical symptoms, whereas type 2 deficiency, also known as dysplasminogenemia, is characterized by normal, or slightly reduced antigen levels, and absence of clinical manifestations. Plasminogen deficiency type 1 results in markedly impaired extracellular fibrinolysis and chronic mucosal pseudomembranous lesions due to subepithelial fibrin deposition and inflammation. The most common clinical manifestation of type 1 deficiency is ligneous conjunctivitis in which pseudomembranes formation on the palpebral surfaces of the eye progresses to white, yellow-white, or red thick masses with a wood-like consistency that replace the normal mucosa.<ref>PMID:1986355</ref> <ref>PMID:8392398</ref> <ref>PMID:6216475</ref> <ref>PMID:6238949</ref> <ref>PMID:1427790</ref> <ref>PMID:9242524</ref> <ref>PMID:9858247</ref> <ref>PMID:10233898</ref>  
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/PLMN_HUMAN PLMN_HUMAN]] Plasmin dissolves the fibrin of blood clots and acts as a proteolytic factor in a variety of other processes including embryonic development, tissue remodeling, tumor invasion, and inflammation. In ovulation, weakens the walls of the Graafian follicle. It activates the urokinase-type plasminogen activator, collagenases and several complement zymogens, such as C1 and C5. Cleavage of fibronectin and laminin leads to cell detachment and apoptosis. Also cleaves fibrin, thrombospondin and von Willebrand factor. Its role in tissue remodeling and tumor invasion may be modulated by CSPG4. Binds to cells.<ref>PMID:14699093</ref>  Angiostatin is an angiogenesis inhibitor that blocks neovascularization and growth of experimental primary and metastatic tumors in vivo.<ref>PMID:14699093</ref>
[https://www.uniprot.org/uniprot/PLMN_HUMAN PLMN_HUMAN] Plasmin dissolves the fibrin of blood clots and acts as a proteolytic factor in a variety of other processes including embryonic development, tissue remodeling, tumor invasion, and inflammation. In ovulation, weakens the walls of the Graafian follicle. It activates the urokinase-type plasminogen activator, collagenases and several complement zymogens, such as C1 and C5. Cleavage of fibronectin and laminin leads to cell detachment and apoptosis. Also cleaves fibrin, thrombospondin and von Willebrand factor. Its role in tissue remodeling and tumor invasion may be modulated by CSPG4. Binds to cells.<ref>PMID:14699093</ref>  Angiostatin is an angiogenesis inhibitor that blocks neovascularization and growth of experimental primary and metastatic tumors in vivo.<ref>PMID:14699093</ref>  
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 16: Line 16:
   <jmolCheckbox>
   <jmolCheckbox>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/dd/1ddj_consurf.spt"</scriptWhenChecked>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/dd/1ddj_consurf.spt"</scriptWhenChecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>
Line 30: Line 30:
</div>
</div>
<div class="pdbe-citations 1ddj" style="background-color:#fffaf0;"></div>
<div class="pdbe-citations 1ddj" style="background-color:#fffaf0;"></div>
==See Also==
*[[Plasminogen 3D structures|Plasminogen 3D structures]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Human]]
[[Category: Homo sapiens]]
[[Category: Plasmin]]
[[Category: Large Structures]]
[[Category: Lin, X]]
[[Category: Lin X]]
[[Category: Loy, J]]
[[Category: Loy J]]
[[Category: Tang, J]]
[[Category: Tang J]]
[[Category: Terzyan, S]]
[[Category: Terzyan S]]
[[Category: Wang, X]]
[[Category: Wang X]]
[[Category: Zhang, X]]
[[Category: Zhang X]]
[[Category: Blood clotting]]
[[Category: Catalytic domain]]
[[Category: Plasminogen]]

Latest revision as of 09:32, 30 October 2024

CRYSTAL STRUCTURE OF HUMAN PLASMINOGEN CATALYTIC DOMAINCRYSTAL STRUCTURE OF HUMAN PLASMINOGEN CATALYTIC DOMAIN

Structural highlights

1ddj is a 4 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

PLMN_HUMAN Defects in PLG are the cause of plasminogen deficiency (PLGD) [MIM:217090. PLGD is characterized by decreased serum plasminogen activity. Two forms of the disorder are distinguished: type 1 deficiency is additionally characterized by decreased plasminogen antigen levels and clinical symptoms, whereas type 2 deficiency, also known as dysplasminogenemia, is characterized by normal, or slightly reduced antigen levels, and absence of clinical manifestations. Plasminogen deficiency type 1 results in markedly impaired extracellular fibrinolysis and chronic mucosal pseudomembranous lesions due to subepithelial fibrin deposition and inflammation. The most common clinical manifestation of type 1 deficiency is ligneous conjunctivitis in which pseudomembranes formation on the palpebral surfaces of the eye progresses to white, yellow-white, or red thick masses with a wood-like consistency that replace the normal mucosa.[1] [2] [3] [4] [5] [6] [7] [8]

Function

PLMN_HUMAN Plasmin dissolves the fibrin of blood clots and acts as a proteolytic factor in a variety of other processes including embryonic development, tissue remodeling, tumor invasion, and inflammation. In ovulation, weakens the walls of the Graafian follicle. It activates the urokinase-type plasminogen activator, collagenases and several complement zymogens, such as C1 and C5. Cleavage of fibronectin and laminin leads to cell detachment and apoptosis. Also cleaves fibrin, thrombospondin and von Willebrand factor. Its role in tissue remodeling and tumor invasion may be modulated by CSPG4. Binds to cells.[9] Angiostatin is an angiogenesis inhibitor that blocks neovascularization and growth of experimental primary and metastatic tumors in vivo.[10]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Activation of the serine protease plasmin from its zymogen, plasminogen, is the key step in fibrinolysis leading to blood clot dissolution. It also plays critical roles in cell migration, such as in tumor metastasis. Here, we report the crystal structure of an inactive S741A mutant of human plasminogen catalytic domain at 2.0 A resolution. This structure permits a direct comparison with that of the plasmin catalytic unit. Unique conformational differences are present between these two structures that are not seen in other zymogen-enzyme pairs of the trypsin family. The functional significance of these differences and the structural basis of plasminogen activation is discussed in the light of this new structure.

Human plasminogen catalytic domain undergoes an unusual conformational change upon activation.,Wang X, Terzyan S, Tang J, Loy JA, Lin X, Zhang XC J Mol Biol. 2000 Jan 28;295(4):903-14. PMID:10656799[11]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Ichinose A, Espling ES, Takamatsu J, Saito H, Shinmyozu K, Maruyama I, Petersen TE, Davie EW. Two types of abnormal genes for plasminogen in families with a predisposition for thrombosis. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):115-9. PMID:1986355
  2. Azuma H, Uno Y, Shigekiyo T, Saito S. Congenital plasminogen deficiency caused by a Ser572 to Pro mutation. Blood. 1993 Jul 15;82(2):475-80. PMID:8392398
  3. Miyata T, Iwanaga S, Sakata Y, Aoki N. Plasminogen Tochigi: inactive plasmin resulting from replacement of alanine-600 by threonine in the active site. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6132-6. PMID:6216475
  4. Miyata T, Iwanaga S, Sakata Y, Aoki N, Takamatsu J, Kamiya T. Plasminogens Tochigi II and Nagoya: two additional molecular defects with Ala-600----Thr replacement found in plasmin light chain variants. J Biochem. 1984 Aug;96(2):277-87. PMID:6238949
  5. Kikuchi S, Yamanouchi Y, Li L, Kobayashi K, Ijima H, Miyazaki R, Tsuchiya S, Hamaguchi H. Plasminogen with type-I mutation is polymorphic in the Japanese population. Hum Genet. 1992 Sep-Oct;90(1-2):7-11. PMID:1427790
  6. Schuster V, Mingers AM, Seidenspinner S, Nussgens Z, Pukrop T, Kreth HW. Homozygous mutations in the plasminogen gene of two unrelated girls with ligneous conjunctivitis. Blood. 1997 Aug 1;90(3):958-66. PMID:9242524
  7. Higuchi Y, Furihata K, Ueno I, Ishikawa S, Okumura N, Tozuka M, Sakurai N. Plasminogen Kanagawa-I, a novel missense mutation, is caused by the amino acid substitution G732R. Br J Haematol. 1998 Dec;103(3):867-70. PMID:9858247
  8. Schuster V, Seidenspinner S, Zeitler P, Escher C, Pleyer U, Bernauer W, Stiehm ER, Isenberg S, Seregard S, Olsson T, Mingers AM, Schambeck C, Kreth HW. Compound-heterozygous mutations in the plasminogen gene predispose to the development of ligneous conjunctivitis. Blood. 1999 May 15;93(10):3457-66. PMID:10233898
  9. Rossignol P, Ho-Tin-Noe B, Vranckx R, Bouton MC, Meilhac O, Lijnen HR, Guillin MC, Michel JB, Angles-Cano E. Protease nexin-1 inhibits plasminogen activation-induced apoptosis of adherent cells. J Biol Chem. 2004 Mar 12;279(11):10346-56. Epub 2003 Dec 29. PMID:14699093 doi:10.1074/jbc.M310964200
  10. Rossignol P, Ho-Tin-Noe B, Vranckx R, Bouton MC, Meilhac O, Lijnen HR, Guillin MC, Michel JB, Angles-Cano E. Protease nexin-1 inhibits plasminogen activation-induced apoptosis of adherent cells. J Biol Chem. 2004 Mar 12;279(11):10346-56. Epub 2003 Dec 29. PMID:14699093 doi:10.1074/jbc.M310964200
  11. Wang X, Terzyan S, Tang J, Loy JA, Lin X, Zhang XC. Human plasminogen catalytic domain undergoes an unusual conformational change upon activation. J Mol Biol. 2000 Jan 28;295(4):903-14. PMID:10656799 doi:10.1006/jmbi.1999.3397

1ddj, resolution 2.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA