1bhf: Difference between revisions
No edit summary |
No edit summary |
||
(16 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==P56LCK SH2 DOMAIN INHIBITOR COMPLEX== | |||
<StructureSection load='1bhf' size='340' side='right'caption='[[1bhf]], [[Resolution|resolution]] 1.80Å' scene=''> | |||
| | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1bhf]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1BHF OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1BHF FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.8Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=1PA:4-(CARBOXYMETHYL)-L-PHENYLALANINE'>1PA</scene>, <scene name='pdbligand=ACE:ACETYL+GROUP'>ACE</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1bhf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1bhf OCA], [https://pdbe.org/1bhf PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1bhf RCSB], [https://www.ebi.ac.uk/pdbsum/1bhf PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1bhf ProSAT]</span></td></tr> | |||
</table> | |||
== Disease == | |||
[https://www.uniprot.org/uniprot/LCK_HUMAN LCK_HUMAN] Severe combined immunodeficiency due to LCK deficiency. Note=A chromosomal aberration involving LCK is found in leukemias. Translocation t(1;7)(p34;q34) with TCRB. | |||
== Function == | |||
[https://www.uniprot.org/uniprot/LCK_HUMAN LCK_HUMAN] Non-receptor tyrosine-protein kinase that plays an essential role in the selection and maturation of developing T-cells in the thymus and in the function of mature T-cells. Plays a key role in T-cell antigen receptor (TCR)-linked signal transduction pathways. Constitutively associated with the cytoplasmic portions of the CD4 and CD8 surface receptors. Association of the TCR with a peptide antigen-bound MHC complex facilitates the interaction of CD4 and CD8 with MHC class II and class I molecules, respectively, thereby recruiting the associated LCK protein to the vicinity of the TCR/CD3 complex. LCK then phosphorylates tyrosines residues within the immunoreceptor tyrosine-based activation motifs (ITAM) of the cytoplasmic tails of the TCR-gamma chains and CD3 subunits, initiating the TCR/CD3 signaling pathway. Once stimulated, the TCR recruits the tyrosine kinase ZAP70, that becomes phosphorylated and activated by LCK. Following this, a large number of signaling molecules are recruited, ultimately leading to lymphokine production. LCK also contributes to signaling by other receptor molecules. Associates directly with the cytoplasmic tail of CD2, which leads to hyperphosphorylation and activation of LCK. Also plays a role in the IL2 receptor-linked signaling pathway that controls the T-cell proliferative response. Binding of IL2 to its receptor results in increased activity of LCK. Is expressed at all stages of thymocyte development and is required for the regulation of maturation events that are governed by both pre-TCR and mature alpha beta TCR. Phosphorylates other substrates including RUNX3, PTK2B/PYK2, the microtubule-associated protein MAPT, RHOH or TYROBP.<ref>PMID:16339550</ref> <ref>PMID:16709819</ref> <ref>PMID:20100835</ref> <ref>PMID:20028775</ref> <ref>PMID:20851766</ref> <ref>PMID:21269457</ref> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/bh/1bhf_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1bhf ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The crystal structure of human p56(lck) SH2 domain in complex with an inhibitor containing the singly charged p-(carboxymethyl)phenylalanine residue (cmF) as a phosphotyrosine (Tyr(P) or pY) replacement has been determined at 1.8 A resolution. The binding mode of the acetyl-cmF-Glu-Glu-Ile (cmFEEI) inhibitor is very similar to that of the pYEEI inhibitor, confirming that the cmFEEI inhibitor has a similar mechanism of SH2 domain inhibition despite its significantly reduced potency. Observed conformational differences in the side chain of the cmF residue can be interpreted in terms of maintaining similar interactions with the SH2 domain as the Tyr(P) residue. The crystal structure of the free p56(lck) SH2 domain has been determined at 1.9 A resolution and shows an open conformation for the BC loop and an open phosphotyrosine binding pocket, in contrast to earlier studies on the src SH2 domain that showed mostly closed conformation. The structural information presented here suggests that the carboxymethyl-phenylalanine residue may be a viable Tyr(P) replacement and represents an attractive starting point for the design and development of SH2 domain inhibitors with better pharmaceutical profiles. | |||
Carboxymethyl-phenylalanine as a replacement for phosphotyrosine in SH2 domain binding.,Tong L, Warren TC, Lukas S, Schembri-King J, Betageri R, Proudfoot JR, Jakes S J Biol Chem. 1998 Aug 7;273(32):20238-42. PMID:9685372<ref>PMID:9685372</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 1bhf" style="background-color:#fffaf0;"></div> | |||
== | ==See Also== | ||
*[[Tyrosine kinase 3D structures|Tyrosine kinase 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
== | |||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Betageri R]] | |||
[[Category: Betageri | [[Category: Jakes S]] | ||
[[Category: Jakes | [[Category: Lukas S]] | ||
[[Category: Lukas | [[Category: Proudfoot JR]] | ||
[[Category: Proudfoot | [[Category: Schembri-King J]] | ||
[[Category: Schembri-King | [[Category: Tong L]] | ||
[[Category: Tong | [[Category: Warren TC]] | ||
[[Category: Warren | |||
Latest revision as of 08:25, 5 June 2024
P56LCK SH2 DOMAIN INHIBITOR COMPLEXP56LCK SH2 DOMAIN INHIBITOR COMPLEX
Structural highlights
DiseaseLCK_HUMAN Severe combined immunodeficiency due to LCK deficiency. Note=A chromosomal aberration involving LCK is found in leukemias. Translocation t(1;7)(p34;q34) with TCRB. FunctionLCK_HUMAN Non-receptor tyrosine-protein kinase that plays an essential role in the selection and maturation of developing T-cells in the thymus and in the function of mature T-cells. Plays a key role in T-cell antigen receptor (TCR)-linked signal transduction pathways. Constitutively associated with the cytoplasmic portions of the CD4 and CD8 surface receptors. Association of the TCR with a peptide antigen-bound MHC complex facilitates the interaction of CD4 and CD8 with MHC class II and class I molecules, respectively, thereby recruiting the associated LCK protein to the vicinity of the TCR/CD3 complex. LCK then phosphorylates tyrosines residues within the immunoreceptor tyrosine-based activation motifs (ITAM) of the cytoplasmic tails of the TCR-gamma chains and CD3 subunits, initiating the TCR/CD3 signaling pathway. Once stimulated, the TCR recruits the tyrosine kinase ZAP70, that becomes phosphorylated and activated by LCK. Following this, a large number of signaling molecules are recruited, ultimately leading to lymphokine production. LCK also contributes to signaling by other receptor molecules. Associates directly with the cytoplasmic tail of CD2, which leads to hyperphosphorylation and activation of LCK. Also plays a role in the IL2 receptor-linked signaling pathway that controls the T-cell proliferative response. Binding of IL2 to its receptor results in increased activity of LCK. Is expressed at all stages of thymocyte development and is required for the regulation of maturation events that are governed by both pre-TCR and mature alpha beta TCR. Phosphorylates other substrates including RUNX3, PTK2B/PYK2, the microtubule-associated protein MAPT, RHOH or TYROBP.[1] [2] [3] [4] [5] [6] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe crystal structure of human p56(lck) SH2 domain in complex with an inhibitor containing the singly charged p-(carboxymethyl)phenylalanine residue (cmF) as a phosphotyrosine (Tyr(P) or pY) replacement has been determined at 1.8 A resolution. The binding mode of the acetyl-cmF-Glu-Glu-Ile (cmFEEI) inhibitor is very similar to that of the pYEEI inhibitor, confirming that the cmFEEI inhibitor has a similar mechanism of SH2 domain inhibition despite its significantly reduced potency. Observed conformational differences in the side chain of the cmF residue can be interpreted in terms of maintaining similar interactions with the SH2 domain as the Tyr(P) residue. The crystal structure of the free p56(lck) SH2 domain has been determined at 1.9 A resolution and shows an open conformation for the BC loop and an open phosphotyrosine binding pocket, in contrast to earlier studies on the src SH2 domain that showed mostly closed conformation. The structural information presented here suggests that the carboxymethyl-phenylalanine residue may be a viable Tyr(P) replacement and represents an attractive starting point for the design and development of SH2 domain inhibitors with better pharmaceutical profiles. Carboxymethyl-phenylalanine as a replacement for phosphotyrosine in SH2 domain binding.,Tong L, Warren TC, Lukas S, Schembri-King J, Betageri R, Proudfoot JR, Jakes S J Biol Chem. 1998 Aug 7;273(32):20238-42. PMID:9685372[7] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|