1a2w: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(20 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1a2w.jpg|left|200px]]<br /><applet load="1a2w" size="450" color="white" frame="true" align="right" spinBox="true"
caption="1a2w, resolution 2.10&Aring;" />
'''CRYSTAL STRUCTURE OF A 3D DOMAIN-SWAPPED DIMER OF BOVINE PANCREATIC RIBONUCLEASE A'''<br />


==Overview==
==CRYSTAL STRUCTURE OF A 3D DOMAIN-SWAPPED DIMER OF BOVINE PANCREATIC RIBONUCLEASE A==
The dimer of bovine pancreatic ribonuclease A (RNase A) discovered by, Crestfield, Stein, and Moore in 1962 has been crystallized and its, structure determined and refined to a 2.1-A resolution. The dimer is 3D, domain-swapped. The N-terminal helix (residues 1-15) of each subunit is, swapped into the major domain (residues 23-124) of the other subunit. The, dimer of bull seminal ribonuclease (BS-RNase) is also known to be, domain-swapped, but the relationship of the subunits within the two dimers, is strikingly different. In the RNase A dimer, the 3-stranded beta sheets, of the two subunits are hydrogen-bonded at their edges to form a, continuous 6-stranded sheet across the dimer interface; in the BS-RNase, dimer, it is instead the two helices that abut. Whereas the BS-RNase dimer, has 2-fold molecular symmetry, the two subunits of the RNase A dimer are, related by a rotation of approximately 160 degrees. Taken together, these, structures show that intersubunit adhesion comes mainly from the swapped, helical domain binding to the other subunit in the "closed interface" but, that the overall architecture of the domain-swapped oligomer depends on, the interactions in the second type of interface, the "open interface.", The RNase A dimer crystals take up the dye Congo Red, but the structure of, a Congo Red-stained crystal reveals no bound dye molecule. Dimer formation, is inhibited by excess amounts of the swapped helical domain. The possible, implications for amyloid formation are discussed.
<StructureSection load='1a2w' size='340' side='right'caption='[[1a2w]], [[Resolution|resolution]] 2.10&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[1a2w]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Bos_taurus Bos taurus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1A2W OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1A2W FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.1&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1a2w FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1a2w OCA], [https://pdbe.org/1a2w PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1a2w RCSB], [https://www.ebi.ac.uk/pdbsum/1a2w PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1a2w ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/RNAS1_BOVIN RNAS1_BOVIN] Endonuclease that catalyzes the cleavage of RNA on the 3' side of pyrimidine nucleotides. Acts on single stranded and double stranded RNA.<ref>PMID:7479688</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/a2/1a2w_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1a2w ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The dimer of bovine pancreatic ribonuclease A (RNase A) discovered by Crestfield, Stein, and Moore in 1962 has been crystallized and its structure determined and refined to a 2.1-A resolution. The dimer is 3D domain-swapped. The N-terminal helix (residues 1-15) of each subunit is swapped into the major domain (residues 23-124) of the other subunit. The dimer of bull seminal ribonuclease (BS-RNase) is also known to be domain-swapped, but the relationship of the subunits within the two dimers is strikingly different. In the RNase A dimer, the 3-stranded beta sheets of the two subunits are hydrogen-bonded at their edges to form a continuous 6-stranded sheet across the dimer interface; in the BS-RNase dimer, it is instead the two helices that abut. Whereas the BS-RNase dimer has 2-fold molecular symmetry, the two subunits of the RNase A dimer are related by a rotation of approximately 160 degrees. Taken together, these structures show that intersubunit adhesion comes mainly from the swapped helical domain binding to the other subunit in the "closed interface" but that the overall architecture of the domain-swapped oligomer depends on the interactions in the second type of interface, the "open interface." The RNase A dimer crystals take up the dye Congo Red, but the structure of a Congo Red-stained crystal reveals no bound dye molecule. Dimer formation is inhibited by excess amounts of the swapped helical domain. The possible implications for amyloid formation are discussed.


==About this Structure==
The crystal structure of a 3D domain-swapped dimer of RNase A at a 2.1-A resolution.,Liu Y, Hart PJ, Schlunegger MP, Eisenberg D Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3437-42. PMID:9520384<ref>PMID:9520384</ref>
1A2W is a [http://en.wikipedia.org/wiki/Single_protein Single protein] structure of sequence from [http://en.wikipedia.org/wiki/Bos_taurus Bos taurus] with CL and SO4 as [http://en.wikipedia.org/wiki/ligands ligands]. Active as [http://en.wikipedia.org/wiki/Pancreatic_ribonuclease Pancreatic ribonuclease], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.1.27.5 3.1.27.5] Known structural/functional Site: <scene name='pdbsite=AVE:The Active Site Contains Residues From Different Subunits'>AVE</scene>. Full crystallographic information is available from [http://ispc.weizmann.ac.il/oca-bin/ocashort?id=1A2W OCA].


==Reference==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
The crystal structure of a 3D domain-swapped dimer of RNase A at a 2.1-A resolution., Liu Y, Hart PJ, Schlunegger MP, Eisenberg D, Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3437-42. PMID:[http://ispc.weizmann.ac.il//pmbin/getpm?pmid=9520384 9520384]
</div>
<div class="pdbe-citations 1a2w" style="background-color:#fffaf0;"></div>
 
==See Also==
*[[Ribonuclease 3D structures|Ribonuclease 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Bos taurus]]
[[Category: Bos taurus]]
[[Category: Pancreatic ribonuclease]]
[[Category: Large Structures]]
[[Category: Single protein]]
[[Category: Eisenberg DS]]
[[Category: Eisenberg, D.S.]]
[[Category: Hart PJ]]
[[Category: Hart, P.J.]]
[[Category: Liu Y]]
[[Category: Liu, Y.]]
[[Category: Schlunegger MP]]
[[Category: Schlunegger, M.P.]]
[[Category: CL]]
[[Category: SO4]]
[[Category: domain swapping]]
[[Category: endonuclease]]
[[Category: hydrolase]]
[[Category: protein-protein interaction]]
[[Category: ribonuclease]]
 
''Page seeded by [http://ispc.weizmann.ac.il/oca OCA ] on Tue Dec 18 14:07:47 2007''

Latest revision as of 09:21, 30 October 2024

CRYSTAL STRUCTURE OF A 3D DOMAIN-SWAPPED DIMER OF BOVINE PANCREATIC RIBONUCLEASE ACRYSTAL STRUCTURE OF A 3D DOMAIN-SWAPPED DIMER OF BOVINE PANCREATIC RIBONUCLEASE A

Structural highlights

1a2w is a 2 chain structure with sequence from Bos taurus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.1Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

RNAS1_BOVIN Endonuclease that catalyzes the cleavage of RNA on the 3' side of pyrimidine nucleotides. Acts on single stranded and double stranded RNA.[1]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The dimer of bovine pancreatic ribonuclease A (RNase A) discovered by Crestfield, Stein, and Moore in 1962 has been crystallized and its structure determined and refined to a 2.1-A resolution. The dimer is 3D domain-swapped. The N-terminal helix (residues 1-15) of each subunit is swapped into the major domain (residues 23-124) of the other subunit. The dimer of bull seminal ribonuclease (BS-RNase) is also known to be domain-swapped, but the relationship of the subunits within the two dimers is strikingly different. In the RNase A dimer, the 3-stranded beta sheets of the two subunits are hydrogen-bonded at their edges to form a continuous 6-stranded sheet across the dimer interface; in the BS-RNase dimer, it is instead the two helices that abut. Whereas the BS-RNase dimer has 2-fold molecular symmetry, the two subunits of the RNase A dimer are related by a rotation of approximately 160 degrees. Taken together, these structures show that intersubunit adhesion comes mainly from the swapped helical domain binding to the other subunit in the "closed interface" but that the overall architecture of the domain-swapped oligomer depends on the interactions in the second type of interface, the "open interface." The RNase A dimer crystals take up the dye Congo Red, but the structure of a Congo Red-stained crystal reveals no bound dye molecule. Dimer formation is inhibited by excess amounts of the swapped helical domain. The possible implications for amyloid formation are discussed.

The crystal structure of a 3D domain-swapped dimer of RNase A at a 2.1-A resolution.,Liu Y, Hart PJ, Schlunegger MP, Eisenberg D Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3437-42. PMID:9520384[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. delCardayre SB, Ribo M, Yokel EM, Quirk DJ, Rutter WJ, Raines RT. Engineering ribonuclease A: production, purification and characterization of wild-type enzyme and mutants at Gln11. Protein Eng. 1995 Mar;8(3):261-73. PMID:7479688
  2. Liu Y, Hart PJ, Schlunegger MP, Eisenberg D. The crystal structure of a 3D domain-swapped dimer of RNase A at a 2.1-A resolution. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3437-42. PMID:9520384

1a2w, resolution 2.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA