1guv: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(16 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1guv.gif|left|200px]]


{{Structure
==Structure of human chitotriosidase==
|PDB= 1guv |SIZE=350|CAPTION= <scene name='initialview01'>1guv</scene>, resolution 2.35&Aring;
<StructureSection load='1guv' size='340' side='right'caption='[[1guv]], [[Resolution|resolution]] 2.35&Aring;' scene=''>
|SITE= <scene name='pdbsite=EGA:Egl+Binding+Site+For+Chain+A'>EGA</scene>
== Structural highlights ==
|LIGAND= <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>
<table><tr><td colspan='2'>[[1guv]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1GUV OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1GUV FirstGlance]. <br>
|ACTIVITY=  
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.35&#8491;</td></tr>
|GENE=  
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene></td></tr>
}}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1guv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1guv OCA], [https://pdbe.org/1guv PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1guv RCSB], [https://www.ebi.ac.uk/pdbsum/1guv PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1guv ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/CHIT1_HUMAN CHIT1_HUMAN] Degrades chitin, chitotriose and chitobiose. May participate in the defense against nematodes and other pathogens. Isoform 3 has no enzymatic activity.<ref>PMID:7592832</ref> <ref>PMID:7836450</ref> <ref>PMID:9748235</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/gu/1guv_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1guv ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Chitin hydrolases have been identified in a variety of organisms ranging from bacteria to eukaryotes. They have been proposed to be possible targets for the design of novel chemotherapeutics against human pathogens such as fungi and protozoan parasites as mammals were not thought to possess chitin-processing enzymes. Recently, a human chitotriosidase was described as a marker for Gaucher disease with plasma levels of the enzyme elevated up to 2 orders of magnitude. The chitotriosidase was shown to be active against colloidal chitin and is inhibited by the family 18 chitinase inhibitor allosamidin. Here, the crystal structure of the human chitotriosidase and complexes with a chitooligosaccharide and allosamidin are described. The structures reveal an elongated active site cleft, compatible with the binding of long chitin polymers, and explain the inactivation of the enzyme through an inherited genetic deficiency. Comparison with YM1 and HCgp-39 shows how the chitinase has evolved into these mammalian lectins by the mutation of key residues in the active site, tuning the substrate binding specificity. The soaking experiments with allosamidin and chitooligosaccharides give insight into ligand binding properties and allow the evaluation of differential binding and design of species-selective chitinase inhibitors.


'''STRUCTURE OF HUMAN CHITOTRIOSIDASE'''
Structure of human chitotriosidase. Implications for specific inhibitor design and function of mammalian chitinase-like lectins.,Fusetti F, von Moeller H, Houston D, Rozeboom HJ, Dijkstra BW, Boot RG, Aerts JM, van Aalten DM J Biol Chem. 2002 Jul 12;277(28):25537-44. Epub 2002 Apr 17. PMID:11960986<ref>PMID:11960986</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1guv" style="background-color:#fffaf0;"></div>


==Overview==
==See Also==
Chitin hydrolases have been identified in a variety of organisms ranging from bacteria to eukaryotes. They have been proposed to be possible targets for the design of novel chemotherapeutics against human pathogens such as fungi and protozoan parasites as mammals were not thought to possess chitin-processing enzymes. Recently, a human chitotriosidase was described as a marker for Gaucher disease with plasma levels of the enzyme elevated up to 2 orders of magnitude. The chitotriosidase was shown to be active against colloidal chitin and is inhibited by the family 18 chitinase inhibitor allosamidin. Here, the crystal structure of the human chitotriosidase and complexes with a chitooligosaccharide and allosamidin are described. The structures reveal an elongated active site cleft, compatible with the binding of long chitin polymers, and explain the inactivation of the enzyme through an inherited genetic deficiency. Comparison with YM1 and HCgp-39 shows how the chitinase has evolved into these mammalian lectins by the mutation of key residues in the active site, tuning the substrate binding specificity. The soaking experiments with allosamidin and chitooligosaccharides give insight into ligand binding properties and allow the evaluation of differential binding and design of species-selective chitinase inhibitors.
*[[Chitinase 3D structures|Chitinase 3D structures]]
 
== References ==
==About this Structure==
<references/>
1GUV is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1GUV OCA].
__TOC__
 
</StructureSection>
==Reference==
Structure of human chitotriosidase. Implications for specific inhibitor design and function of mammalian chitinase-like lectins., Fusetti F, von Moeller H, Houston D, Rozeboom HJ, Dijkstra BW, Boot RG, Aerts JM, van Aalten DM, J Biol Chem. 2002 Jul 12;277(28):25537-44. Epub 2002 Apr 17. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/11960986 11960986]
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Single protein]]
[[Category: Large Structures]]
[[Category: Aalten, D M.F Van.]]
[[Category: Aerts JMFG]]
[[Category: Aerts, J M.F G.]]
[[Category: Boot RG]]
[[Category: Boot, R G.]]
[[Category: Houston D]]
[[Category: Houston, D.]]
[[Category: Van Aalten DMF]]
[[Category: Moeller, H Von.]]
[[Category: Von Moeller H]]
[[Category: EDO]]
[[Category: chitin degradation]]
[[Category: glycosidase]]
[[Category: hydrolase]]
[[Category: lectin]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 11:28:16 2008''

Latest revision as of 03:01, 21 November 2024

Structure of human chitotriosidaseStructure of human chitotriosidase

Structural highlights

1guv is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.35Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

CHIT1_HUMAN Degrades chitin, chitotriose and chitobiose. May participate in the defense against nematodes and other pathogens. Isoform 3 has no enzymatic activity.[1] [2] [3]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Chitin hydrolases have been identified in a variety of organisms ranging from bacteria to eukaryotes. They have been proposed to be possible targets for the design of novel chemotherapeutics against human pathogens such as fungi and protozoan parasites as mammals were not thought to possess chitin-processing enzymes. Recently, a human chitotriosidase was described as a marker for Gaucher disease with plasma levels of the enzyme elevated up to 2 orders of magnitude. The chitotriosidase was shown to be active against colloidal chitin and is inhibited by the family 18 chitinase inhibitor allosamidin. Here, the crystal structure of the human chitotriosidase and complexes with a chitooligosaccharide and allosamidin are described. The structures reveal an elongated active site cleft, compatible with the binding of long chitin polymers, and explain the inactivation of the enzyme through an inherited genetic deficiency. Comparison with YM1 and HCgp-39 shows how the chitinase has evolved into these mammalian lectins by the mutation of key residues in the active site, tuning the substrate binding specificity. The soaking experiments with allosamidin and chitooligosaccharides give insight into ligand binding properties and allow the evaluation of differential binding and design of species-selective chitinase inhibitors.

Structure of human chitotriosidase. Implications for specific inhibitor design and function of mammalian chitinase-like lectins.,Fusetti F, von Moeller H, Houston D, Rozeboom HJ, Dijkstra BW, Boot RG, Aerts JM, van Aalten DM J Biol Chem. 2002 Jul 12;277(28):25537-44. Epub 2002 Apr 17. PMID:11960986[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Boot RG, Renkema GH, Strijland A, van Zonneveld AJ, Aerts JM. Cloning of a cDNA encoding chitotriosidase, a human chitinase produced by macrophages. J Biol Chem. 1995 Nov 3;270(44):26252-6. PMID:7592832
  2. Renkema GH, Boot RG, Muijsers AO, Donker-Koopman WE, Aerts JM. Purification and characterization of human chitotriosidase, a novel member of the chitinase family of proteins. J Biol Chem. 1995 Feb 3;270(5):2198-202. PMID:7836450
  3. Boot RG, Renkema GH, Verhoek M, Strijland A, Bliek J, de Meulemeester TM, Mannens MM, Aerts JM. The human chitotriosidase gene. Nature of inherited enzyme deficiency. J Biol Chem. 1998 Oct 2;273(40):25680-5. PMID:9748235
  4. Fusetti F, von Moeller H, Houston D, Rozeboom HJ, Dijkstra BW, Boot RG, Aerts JM, van Aalten DM. Structure of human chitotriosidase. Implications for specific inhibitor design and function of mammalian chitinase-like lectins. J Biol Chem. 2002 Jul 12;277(28):25537-44. Epub 2002 Apr 17. PMID:11960986 doi:10.1074/jbc.M201636200

1guv, resolution 2.35Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA