1tf4: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(18 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1tf4.gif|left|200px]]<br />
<applet load="1tf4" size="450" color="white" frame="true" align="right" spinBox="true"
caption="1tf4, resolution 1.9&Aring;" />
'''ENDO/EXOCELLULASE FROM THERMOMONOSPORA'''<br />


==Overview==
==ENDO/EXOCELLULASE FROM THERMOMONOSPORA==
Cellulase E4 from Thermomonospora fusca is unusual in that it has, characteristics of both exo- and endo-cellulases. Here we report the, crystal structure of a 68K M(r) fragment of E4 (E4-68) at 1.9 A, resolution. E4-68 contains both a family 9 catalytic domain, exhibiting an, (alpha/alpha)6 barrel fold, and a family III cellulose binding domain, having an antiparallel beta-sandwich fold. While neither of these folds is, novel, E4-68 provides the first cellulase structure having interacting, catalytic and cellulose binding domains. The complexes of E4-68 with, cellopentaose, cellotriose and cellobiose reveal conformational changes, associated with ligand binding and allow us to propose a catalytic, mechanism for family 9 enzymes. We also provide evidence that E4 has two, novel characteristics: first it combines exo- and endo-activities and, second, when it functions as an exo-cellulase, it cleaves off, cellotetraose units.
<StructureSection load='1tf4' size='340' side='right'caption='[[1tf4]], [[Resolution|resolution]] 1.90&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[1tf4]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Thermobifida_fusca Thermobifida fusca]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1TF4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1TF4 FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.9&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1tf4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1tf4 OCA], [https://pdbe.org/1tf4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1tf4 RCSB], [https://www.ebi.ac.uk/pdbsum/1tf4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1tf4 ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/GUN4_THEFU GUN4_THEFU]
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/tf/1tf4_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1tf4 ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Cellulase E4 from Thermomonospora fusca is unusual in that it has characteristics of both exo- and endo-cellulases. Here we report the crystal structure of a 68K M(r) fragment of E4 (E4-68) at 1.9 A resolution. E4-68 contains both a family 9 catalytic domain, exhibiting an (alpha/alpha)6 barrel fold, and a family III cellulose binding domain, having an antiparallel beta-sandwich fold. While neither of these folds is novel, E4-68 provides the first cellulase structure having interacting catalytic and cellulose binding domains. The complexes of E4-68 with cellopentaose, cellotriose and cellobiose reveal conformational changes associated with ligand binding and allow us to propose a catalytic mechanism for family 9 enzymes. We also provide evidence that E4 has two novel characteristics: first it combines exo- and endo-activities and second, when it functions as an exo-cellulase, it cleaves off cellotetraose units.


==About this Structure==
Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca.,Sakon J, Irwin D, Wilson DB, Karplus PA Nat Struct Biol. 1997 Oct;4(10):810-8. PMID:9334746<ref>PMID:9334746</ref>
1TF4 is a [http://en.wikipedia.org/wiki/Single_protein Single protein] structure of sequence from [http://en.wikipedia.org/wiki/Thermobifida_fusca Thermobifida fusca] with CA as [http://en.wikipedia.org/wiki/ligand ligand]. Active as [http://en.wikipedia.org/wiki/Cellulase Cellulase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.4 3.2.1.4] Structure known Active Sites: AA1, AB1, CA1, CA2, CA3 and CA4. Full crystallographic information is available from [http://ispc.weizmann.ac.il/oca-bin/ocashort?id=1TF4 OCA].


==Reference==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca., Sakon J, Irwin D, Wilson DB, Karplus PA, Nat Struct Biol. 1997 Oct;4(10):810-8. PMID:[http://ispc.weizmann.ac.il//pmbin/getpm?pmid=9334746 9334746]
</div>
[[Category: Cellulase]]
<div class="pdbe-citations 1tf4" style="background-color:#fffaf0;"></div>
[[Category: Single protein]]
 
==See Also==
*[[Glucanase 3D structures|Glucanase 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Large Structures]]
[[Category: Thermobifida fusca]]
[[Category: Thermobifida fusca]]
[[Category: Karplus, P.A.]]
[[Category: Karplus PA]]
[[Category: Sakon, J.]]
[[Category: Sakon J]]
[[Category: Wilson, D.B.]]
[[Category: Wilson DB]]
[[Category: CA]]
[[Category: cellulose degradation]]
[[Category: glycosyl hydrolase]]
 
''Page seeded by [http://ispc.weizmann.ac.il/oca OCA ] on Mon Nov  5 17:05:35 2007''

Latest revision as of 10:27, 30 October 2024

ENDO/EXOCELLULASE FROM THERMOMONOSPORAENDO/EXOCELLULASE FROM THERMOMONOSPORA

Structural highlights

1tf4 is a 2 chain structure with sequence from Thermobifida fusca. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.9Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

GUN4_THEFU

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Cellulase E4 from Thermomonospora fusca is unusual in that it has characteristics of both exo- and endo-cellulases. Here we report the crystal structure of a 68K M(r) fragment of E4 (E4-68) at 1.9 A resolution. E4-68 contains both a family 9 catalytic domain, exhibiting an (alpha/alpha)6 barrel fold, and a family III cellulose binding domain, having an antiparallel beta-sandwich fold. While neither of these folds is novel, E4-68 provides the first cellulase structure having interacting catalytic and cellulose binding domains. The complexes of E4-68 with cellopentaose, cellotriose and cellobiose reveal conformational changes associated with ligand binding and allow us to propose a catalytic mechanism for family 9 enzymes. We also provide evidence that E4 has two novel characteristics: first it combines exo- and endo-activities and second, when it functions as an exo-cellulase, it cleaves off cellotetraose units.

Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca.,Sakon J, Irwin D, Wilson DB, Karplus PA Nat Struct Biol. 1997 Oct;4(10):810-8. PMID:9334746[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Sakon J, Irwin D, Wilson DB, Karplus PA. Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca. Nat Struct Biol. 1997 Oct;4(10):810-8. PMID:9334746

1tf4, resolution 1.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA