2cku: Difference between revisions
No edit summary |
No edit summary |
||
(9 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Solution structure of 2F13F1 from human fibronectin== | |||
<StructureSection load='2cku' size='340' side='right'caption='[[2cku]]' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2cku]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2CKU OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2CKU FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR, 15 models</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2cku FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2cku OCA], [https://pdbe.org/2cku PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2cku RCSB], [https://www.ebi.ac.uk/pdbsum/2cku PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2cku ProSAT]</span></td></tr> | |||
</table> | |||
== Disease == | |||
[https://www.uniprot.org/uniprot/FINC_HUMAN FINC_HUMAN] Defects in FN1 are the cause of glomerulopathy with fibronectin deposits type 2 (GFND2) [MIM:[https://omim.org/entry/601894 601894]; also known as familial glomerular nephritis with fibronectin deposits or fibronectin glomerulopathy. GFND is a genetically heterogeneous autosomal dominant disorder characterized clinically by proteinuria, microscopic hematuria, and hypertension that leads to end-stage renal failure in the second to fifth decade of life.<ref>PMID:18268355</ref> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/FINC_HUMAN FINC_HUMAN] Fibronectins bind cell surfaces and various compounds including collagen, fibrin, heparin, DNA, and actin. Fibronectins are involved in cell adhesion, cell motility, opsonization, wound healing, and maintenance of cell shape.<ref>PMID:8114919</ref> <ref>PMID:11209058</ref> <ref>PMID:15665290</ref> <ref>PMID:19379667</ref> Anastellin binds fibronectin and induces fibril formation. This fibronectin polymer, named superfibronectin, exhibits enhanced adhesive properties. Both anastellin and superfibronectin inhibit tumor growth, angiogenesis and metastasis. Anastellin activates p38 MAPK and inhibits lysophospholipid signaling.<ref>PMID:8114919</ref> <ref>PMID:11209058</ref> <ref>PMID:15665290</ref> <ref>PMID:19379667</ref> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ck/2cku_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2cku ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
An important goal of structural studies of modular proteins is to determine the inter-module orientation, which often influences biological function. The N-terminal domain of human fibronectin (Fn) is composed of a string of five type 1 modules (F1). Despite their small size, to date F1 modules have proved intractable to X-ray structure solution, although there are several NMR structures available. Here, we present the first structures (two X-ray models and an NMR-derived model) of the (2)F1(3)F1 module pair, which forms part of the binding site for Fn-binding proteins from pathogenic bacteria. The crystallographic structure determination was aided by the novel technique of UV radiation damage-induced phasing. The individual module structures are very similar in all three models. In the NMR structure and one of the X-ray structures, a similar but smaller interdomain interface than that observed previously for (4)F1(5)F1 is seen. The other X-ray structure has a different interdomain orientation. This work underlines the benefits of combining X-ray and NMR data in the studies of multi-domain proteins. | |||
The solution and crystal structures of a module pair from the Staphylococcus aureus-binding site of human fibronectin--a tale with a twist.,Rudino-Pinera E, Ravelli RB, Sheldrick GM, Nanao MH, Korostelev VV, Werner JM, Schwarz-Linek U, Potts JR, Garman EF J Mol Biol. 2007 May 4;368(3):833-44. Epub 2007 Feb 22. PMID:17368672<ref>PMID:17368672</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2cku" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== | ||
*[[Fibronectin|Fibronectin]] | *[[Fibronectin 3D structures|Fibronectin 3D structures]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: | [[Category: Potts JR]] | ||
[[Category: | [[Category: Werner JM]] | ||
Latest revision as of 08:09, 17 October 2024
Solution structure of 2F13F1 from human fibronectinSolution structure of 2F13F1 from human fibronectin
Structural highlights
DiseaseFINC_HUMAN Defects in FN1 are the cause of glomerulopathy with fibronectin deposits type 2 (GFND2) [MIM:601894; also known as familial glomerular nephritis with fibronectin deposits or fibronectin glomerulopathy. GFND is a genetically heterogeneous autosomal dominant disorder characterized clinically by proteinuria, microscopic hematuria, and hypertension that leads to end-stage renal failure in the second to fifth decade of life.[1] FunctionFINC_HUMAN Fibronectins bind cell surfaces and various compounds including collagen, fibrin, heparin, DNA, and actin. Fibronectins are involved in cell adhesion, cell motility, opsonization, wound healing, and maintenance of cell shape.[2] [3] [4] [5] Anastellin binds fibronectin and induces fibril formation. This fibronectin polymer, named superfibronectin, exhibits enhanced adhesive properties. Both anastellin and superfibronectin inhibit tumor growth, angiogenesis and metastasis. Anastellin activates p38 MAPK and inhibits lysophospholipid signaling.[6] [7] [8] [9] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedAn important goal of structural studies of modular proteins is to determine the inter-module orientation, which often influences biological function. The N-terminal domain of human fibronectin (Fn) is composed of a string of five type 1 modules (F1). Despite their small size, to date F1 modules have proved intractable to X-ray structure solution, although there are several NMR structures available. Here, we present the first structures (two X-ray models and an NMR-derived model) of the (2)F1(3)F1 module pair, which forms part of the binding site for Fn-binding proteins from pathogenic bacteria. The crystallographic structure determination was aided by the novel technique of UV radiation damage-induced phasing. The individual module structures are very similar in all three models. In the NMR structure and one of the X-ray structures, a similar but smaller interdomain interface than that observed previously for (4)F1(5)F1 is seen. The other X-ray structure has a different interdomain orientation. This work underlines the benefits of combining X-ray and NMR data in the studies of multi-domain proteins. The solution and crystal structures of a module pair from the Staphylococcus aureus-binding site of human fibronectin--a tale with a twist.,Rudino-Pinera E, Ravelli RB, Sheldrick GM, Nanao MH, Korostelev VV, Werner JM, Schwarz-Linek U, Potts JR, Garman EF J Mol Biol. 2007 May 4;368(3):833-44. Epub 2007 Feb 22. PMID:17368672[10] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|