1trs: Difference between revisions
No edit summary |
No edit summary |
||
(18 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== | ==THE HIGH-RESOLUTION THREE-DIMENSIONAL SOLUTION STRUCTURES OF THE OXIDIZED AND REDUCED STATES OF HUMAN THIOREDOXIN== | ||
BACKGROUND: Thioredoxin is a ubiquitous protein and is involved in a | <StructureSection load='1trs' size='340' side='right'caption='[[1trs]]' scene=''> | ||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1trs]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1TRS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1TRS FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR, 1 model</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1trs FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1trs OCA], [https://pdbe.org/1trs PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1trs RCSB], [https://www.ebi.ac.uk/pdbsum/1trs PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1trs ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/THIO_HUMAN THIO_HUMAN] Participates in various redox reactions through the reversible oxidation of its active center dithiol to a disulfide and catalyzes dithiol-disulfide exchange reactions. Plays a role in the reversible S-nitrosylation of cysteine residues in target proteins, and thereby contributes to the response to intracellular nitric oxide. Nitrosylates the active site Cys of CASP3 in response to nitric oxide (NO), and thereby inhibits caspase-3 activity. Induces the FOS/JUN AP-1 DNA-binding activity in ionizing radiation (IR) cells through its oxidation/reduction status and stimulates AP-1 transcriptional activity.<ref>PMID:2176490</ref> <ref>PMID:9108029</ref> <ref>PMID:11118054</ref> <ref>PMID:16408020</ref> <ref>PMID:17606900</ref> ADF augments the expression of the interleukin-2 receptor TAC (IL2R/P55).<ref>PMID:2176490</ref> <ref>PMID:9108029</ref> <ref>PMID:11118054</ref> <ref>PMID:16408020</ref> <ref>PMID:17606900</ref> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/tr/1trs_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1trs ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
BACKGROUND: Thioredoxin is a ubiquitous protein and is involved in a variety of fundamental biological functions. Its active site is conserved and has two redox active cysteines in the sequence Trp-Cys-Gly-Pro-Cys. No structures of the oxidized and reduced states from the same species have been determined at high resolution under the same conditions and using the same methods. Hence, any detailed comparison of the two oxidation states has been previously precluded. RESULTS: The reduced and oxidized states of the (C62A, C69A, C73A) mutant of human thioredoxin have been investigated by multidimensional heteronuclear NMR. Structures for both states were determined on the basis of approximately 28 experimental restraints per residue, and the resulting precision of the two structures is very high. Consequently, subtle differences between the oxidized and reduced states can be reliably assessed and evaluated. Small differences, particularly within and around the active site can be discerned. CONCLUSIONS: Overall, the structures of the reduced and oxidized states of the (C62A, C69A, C73A) mutant of human thioredoxin are very similar (with a backbone atomic root mean square difference of about 0.9 A) and the packing of side chains within the protein core is nearly identical. The conformational change between oxidized and reduced human thioredoxin is very small and localized to areas in spatial proximity to the redox active cysteines. These subtle structural differences, in addition to the restriction of conformational freedom within the active site upon oxidation, may be important for the different activities of thioredoxin involving a variety of target proteins. | |||
The high-resolution three-dimensional solution structures of the oxidized and reduced states of human thioredoxin.,Qin J, Clore GM, Gronenborn AM Structure. 1994 Jun 15;2(6):503-22. PMID:7922028<ref>PMID:7922028</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 1trs" style="background-color:#fffaf0;"></div> | |||
== | ==See Also== | ||
*[[Thioredoxin 3D structures|Thioredoxin 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Clore | [[Category: Clore GM]] | ||
[[Category: Gronenborn | [[Category: Gronenborn AM]] | ||
[[Category: Qin | [[Category: Qin J]] | ||
Latest revision as of 07:55, 17 October 2024
THE HIGH-RESOLUTION THREE-DIMENSIONAL SOLUTION STRUCTURES OF THE OXIDIZED AND REDUCED STATES OF HUMAN THIOREDOXINTHE HIGH-RESOLUTION THREE-DIMENSIONAL SOLUTION STRUCTURES OF THE OXIDIZED AND REDUCED STATES OF HUMAN THIOREDOXIN
Structural highlights
FunctionTHIO_HUMAN Participates in various redox reactions through the reversible oxidation of its active center dithiol to a disulfide and catalyzes dithiol-disulfide exchange reactions. Plays a role in the reversible S-nitrosylation of cysteine residues in target proteins, and thereby contributes to the response to intracellular nitric oxide. Nitrosylates the active site Cys of CASP3 in response to nitric oxide (NO), and thereby inhibits caspase-3 activity. Induces the FOS/JUN AP-1 DNA-binding activity in ionizing radiation (IR) cells through its oxidation/reduction status and stimulates AP-1 transcriptional activity.[1] [2] [3] [4] [5] ADF augments the expression of the interleukin-2 receptor TAC (IL2R/P55).[6] [7] [8] [9] [10] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedBACKGROUND: Thioredoxin is a ubiquitous protein and is involved in a variety of fundamental biological functions. Its active site is conserved and has two redox active cysteines in the sequence Trp-Cys-Gly-Pro-Cys. No structures of the oxidized and reduced states from the same species have been determined at high resolution under the same conditions and using the same methods. Hence, any detailed comparison of the two oxidation states has been previously precluded. RESULTS: The reduced and oxidized states of the (C62A, C69A, C73A) mutant of human thioredoxin have been investigated by multidimensional heteronuclear NMR. Structures for both states were determined on the basis of approximately 28 experimental restraints per residue, and the resulting precision of the two structures is very high. Consequently, subtle differences between the oxidized and reduced states can be reliably assessed and evaluated. Small differences, particularly within and around the active site can be discerned. CONCLUSIONS: Overall, the structures of the reduced and oxidized states of the (C62A, C69A, C73A) mutant of human thioredoxin are very similar (with a backbone atomic root mean square difference of about 0.9 A) and the packing of side chains within the protein core is nearly identical. The conformational change between oxidized and reduced human thioredoxin is very small and localized to areas in spatial proximity to the redox active cysteines. These subtle structural differences, in addition to the restriction of conformational freedom within the active site upon oxidation, may be important for the different activities of thioredoxin involving a variety of target proteins. The high-resolution three-dimensional solution structures of the oxidized and reduced states of human thioredoxin.,Qin J, Clore GM, Gronenborn AM Structure. 1994 Jun 15;2(6):503-22. PMID:7922028[11] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|