1rwx: Difference between revisions
No edit summary |
No edit summary |
||
(13 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Crystal structure of human caspase-1 in complex with 4-oxo-3-{6-[4-(quinoxalin-2-yloxy)-benzoylamino]-2-thiophen-2-yl-hexanoylamino}-butyric acid== | |||
<StructureSection load='1rwx' size='340' side='right'caption='[[1rwx]], [[Resolution|resolution]] 1.85Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1rwx]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1RWX OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1RWX FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.85Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=YBH:4-OXO-3-{6-[4-(QUINOXALIN-2-YLOXY)-BENZOYLAMINO]-2-THIOPHEN-2-YL-HEXANOYLAMINO}-BUTYRIC+ACID'>YBH</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1rwx FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1rwx OCA], [https://pdbe.org/1rwx PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1rwx RCSB], [https://www.ebi.ac.uk/pdbsum/1rwx PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1rwx ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/CASP1_HUMAN CASP1_HUMAN] Thiol protease that cleaves IL-1 beta between an Asp and an Ala, releasing the mature cytokine which is involved in a variety of inflammatory processes. Important for defense against pathogens. Cleaves and activates sterol regulatory element binding proteins (SREBPs). Can also promote apoptosis.<ref>PMID:7876192</ref> <ref>PMID:15498465</ref> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/rw/1rwx_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1rwx ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Disulfide Tethering was applied to the active site of human caspase-1, resulting in the discovery of a novel, tricyclic molecular fragment that selectively binds in S4. This fragment was developed into a class of potent inhibitors of human caspase-1. Several key analogues determined the optimal distance of the tricycle from the catalytic residues, the relative importance of various features of the tricycle, and the importance of the linker. | |||
Tethering identifies fragment that yields potent inhibitors of human caspase-1.,Fahr BT, O'Brien T, Pham P, Waal ND, Baskaran S, Raimundo BC, Lam JW, Sopko MM, Purkey HE, Romanowski MJ Bioorg Med Chem Lett. 2006 Feb;16(3):559-62. Epub 2005 Nov 4. PMID:16274992<ref>PMID:16274992</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 1rwx" style="background-color:#fffaf0;"></div> | |||
== | ==See Also== | ||
*[[Caspase 3D structures|Caspase 3D structures]] | |||
[ | == References == | ||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: | [[Category: Fahr BT]] | ||
[[Category: | [[Category: O'Brien T]] | ||
[[Category: Romanowski | [[Category: Romanowski MJ]] | ||
Latest revision as of 07:52, 17 October 2024
Crystal structure of human caspase-1 in complex with 4-oxo-3-{6-[4-(quinoxalin-2-yloxy)-benzoylamino]-2-thiophen-2-yl-hexanoylamino}-butyric acidCrystal structure of human caspase-1 in complex with 4-oxo-3-{6-[4-(quinoxalin-2-yloxy)-benzoylamino]-2-thiophen-2-yl-hexanoylamino}-butyric acid
Structural highlights
FunctionCASP1_HUMAN Thiol protease that cleaves IL-1 beta between an Asp and an Ala, releasing the mature cytokine which is involved in a variety of inflammatory processes. Important for defense against pathogens. Cleaves and activates sterol regulatory element binding proteins (SREBPs). Can also promote apoptosis.[1] [2] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedDisulfide Tethering was applied to the active site of human caspase-1, resulting in the discovery of a novel, tricyclic molecular fragment that selectively binds in S4. This fragment was developed into a class of potent inhibitors of human caspase-1. Several key analogues determined the optimal distance of the tricycle from the catalytic residues, the relative importance of various features of the tricycle, and the importance of the linker. Tethering identifies fragment that yields potent inhibitors of human caspase-1.,Fahr BT, O'Brien T, Pham P, Waal ND, Baskaran S, Raimundo BC, Lam JW, Sopko MM, Purkey HE, Romanowski MJ Bioorg Med Chem Lett. 2006 Feb;16(3):559-62. Epub 2005 Nov 4. PMID:16274992[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|