1pme: Difference between revisions

No edit summary
No edit summary
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1pme.gif|left|200px]]


<!--
==STRUCTURE OF PENTA MUTANT HUMAN ERK2 MAP KINASE COMPLEXED WITH A SPECIFIC INHIBITOR OF HUMAN P38 MAP KINASE==
The line below this paragraph, containing "STRUCTURE_1pme", creates the "Structure Box" on the page.
<StructureSection load='1pme' size='340' side='right'caption='[[1pme]], [[Resolution|resolution]] 2.00&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)  
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[1pme]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1PME OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1PME FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2&#8491;</td></tr>
-->
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CME:S,S-(2-HYDROXYETHYL)THIOCYSTEINE'>CME</scene>, <scene name='pdbligand=SB2:4-[5-(4-FLUORO-PHENYL)-2-(4-METHANESULFINYL-PHENYL)-3H-IMIDAZOL-4-YL]-PYRIDINE'>SB2</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
{{STRUCTURE_1pme| PDB=1pme  | SCENE= }}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1pme FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1pme OCA], [https://pdbe.org/1pme PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1pme RCSB], [https://www.ebi.ac.uk/pdbsum/1pme PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1pme ProSAT]</span></td></tr>
 
</table>
'''STRUCTURE OF PENTA MUTANT HUMAN ERK2 MAP KINASE COMPLEXED WITH A SPECIFIC INHIBITOR OF HUMAN P38 MAP KINASE'''
== Function ==
 
[https://www.uniprot.org/uniprot/MK01_HUMAN MK01_HUMAN] Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK1/ERK2 and MAPK3/ERK1 are the 2 MAPKs which play an important role in the MAPK/ERK cascade. They participate also in a signaling cascade initiated by activated KIT and KITLG/SCF. Depending on the cellular context, the MAPK/ERK cascade mediates diverse biological functions such as cell growth, adhesion, survival and differentiation through the regulation of transcription, translation, cytoskeletal rearrangements. The MAPK/ERK cascade plays also a role in initiation and regulation of meiosis, mitosis, and postmitotic functions in differentiated cells by phosphorylating a number of transcription factors. About 160 substrates have already been discovered for ERKs. Many of these substrates are localized in the nucleus, and seem to participate in the regulation of transcription upon stimulation. However, other substrates are found in the cytosol as well as in other cellular organelles, and those are responsible for processes such as translation, mitosis and apoptosis. Moreover, the MAPK/ERK cascade is also involved in the regulation of the endosomal dynamics, including lysosome processing and endosome cycling through the perinuclear recycling compartment (PNRC); as well as in the fragmentation of the Golgi apparatus during mitosis. The substrates include transcription factors (such as ATF2, BCL6, ELK1, ERF, FOS, HSF4 or SPZ1), cytoskeletal elements (such as CANX, CTTN, GJA1, MAP2, MAPT, PXN, SORBS3 or STMN1), regulators of apoptosis (such as BAD, BTG2, CASP9, DAPK1, IER3, MCL1 or PPARG), regulators of translation (such as EIF4EBP1) and a variety of other signaling-related molecules (like ARHGEF2, DCC, FRS2 or GRB10). Protein kinases (such as RAF1, RPS6KA1/RSK1, RPS6KA3/RSK2, RPS6KA2/RSK3, RPS6KA6/RSK4, SYK, MKNK1/MNK1, MKNK2/MNK2, RPS6KA5/MSK1, RPS6KA4/MSK2, MAPKAPK3 or MAPKAPK5) and phosphatases (such as DUSP1, DUSP4, DUSP6 or DUSP16) are other substrates which enable the propagation the MAPK/ERK signal to additional cytosolic and nuclear targets, thereby extending the specificity of the cascade. May play a role in the spindle assembly checkpoint.<ref>PMID:7588608</ref> <ref>PMID:8622688</ref> <ref>PMID:9480836</ref> <ref>PMID:9687510</ref> <ref>PMID:9649500</ref> <ref>PMID:9596579</ref> <ref>PMID:10637505</ref> <ref>PMID:10617468</ref> <ref>PMID:11154262</ref> <ref>PMID:12110590</ref> <ref>PMID:12356731</ref> <ref>PMID:12974390</ref> <ref>PMID:12794087</ref> <ref>PMID:12792650</ref> <ref>PMID:15184391</ref> <ref>PMID:15241487</ref> <ref>PMID:15952796</ref> <ref>PMID:15616583</ref> <ref>PMID:15788397</ref> <ref>PMID:15664191</ref> <ref>PMID:16581800</ref> <ref>PMID:19879846</ref> <ref>PMID:19265199</ref>  Acts as a transcriptional repressor. Binds to a [GC]AAA[GC] consensus sequence. Repress the expression of interferon gamma-induced genes. Seems to bind to the promoter of CCL5, DMP1, IFIH1, IFITM1, IRF7, IRF9, LAMP3, OAS1, OAS2, OAS3 and STAT1. Transcriptional activity is independent of kinase activity.<ref>PMID:7588608</ref> <ref>PMID:8622688</ref> <ref>PMID:9480836</ref> <ref>PMID:9687510</ref> <ref>PMID:9649500</ref> <ref>PMID:9596579</ref> <ref>PMID:10637505</ref> <ref>PMID:10617468</ref> <ref>PMID:11154262</ref> <ref>PMID:12110590</ref> <ref>PMID:12356731</ref> <ref>PMID:12974390</ref> <ref>PMID:12794087</ref> <ref>PMID:12792650</ref> <ref>PMID:15184391</ref> <ref>PMID:15241487</ref> <ref>PMID:15952796</ref> <ref>PMID:15616583</ref> <ref>PMID:15788397</ref> <ref>PMID:15664191</ref> <ref>PMID:16581800</ref> <ref>PMID:19879846</ref> <ref>PMID:19265199</ref>  
 
== Evolutionary Conservation ==
==Overview==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/pm/1pme_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1pme ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Mitogen-activated protein (MAP) kinases are serine/threonine kinases that mediate intracellular signal transduction pathways. Pyridinyl imidazole compounds block pro-inflammatory cytokine production and are specific p38 kinase inhibitors. ERK2 is related to p38 in sequence and structure, but is not inhibited by pyridinyl imidazole inhibitors. Crystal structures of two pyridinyl imidazoles complexed with p38 revealed these compounds bind in the ATP site. Mutagenesis data suggested a single residue difference at threonine 106 between p38 and other MAP kinases is sufficient to confer selectivity of pyridinyl imidazoles. We have changed the equivalent residue in human ERK2, Q105, into threonine and alanine, and substituted four additional ATP binding site residues. The single residue change Q105A in ERK2 enhances the binding of SB202190 at least 25,000-fold compared to wild-type ERK2. We report enzymatic analyses of wild-type ERK2 and the mutant proteins, and the crystal structure of a pyridinyl imidazole, SB203580, bound to an ERK2 pentamutant, I103L, Q105T, D106H, E109G. T110A. These ATP binding site substitutions induce low nanomolar sensitivity to pyridinyl imidazoles. Furthermore, we identified 5-iodotubercidin as a potent ERK2 inhibitor, which may help reveal the role of ERK2 in cell proliferation.
Mitogen-activated protein (MAP) kinases are serine/threonine kinases that mediate intracellular signal transduction pathways. Pyridinyl imidazole compounds block pro-inflammatory cytokine production and are specific p38 kinase inhibitors. ERK2 is related to p38 in sequence and structure, but is not inhibited by pyridinyl imidazole inhibitors. Crystal structures of two pyridinyl imidazoles complexed with p38 revealed these compounds bind in the ATP site. Mutagenesis data suggested a single residue difference at threonine 106 between p38 and other MAP kinases is sufficient to confer selectivity of pyridinyl imidazoles. We have changed the equivalent residue in human ERK2, Q105, into threonine and alanine, and substituted four additional ATP binding site residues. The single residue change Q105A in ERK2 enhances the binding of SB202190 at least 25,000-fold compared to wild-type ERK2. We report enzymatic analyses of wild-type ERK2 and the mutant proteins, and the crystal structure of a pyridinyl imidazole, SB203580, bound to an ERK2 pentamutant, I103L, Q105T, D106H, E109G. T110A. These ATP binding site substitutions induce low nanomolar sensitivity to pyridinyl imidazoles. Furthermore, we identified 5-iodotubercidin as a potent ERK2 inhibitor, which may help reveal the role of ERK2 in cell proliferation.


==About this Structure==
A single amino acid substitution makes ERK2 susceptible to pyridinyl imidazole inhibitors of p38 MAP kinase.,Fox T, Coll JT, Xie X, Ford PJ, Germann UA, Porter MD, Pazhanisamy S, Fleming MA, Galullo V, Su MS, Wilson KP Protein Sci. 1998 Nov;7(11):2249-55. PMID:9827991<ref>PMID:9827991</ref>
1PME is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1PME OCA].


==Reference==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
A single amino acid substitution makes ERK2 susceptible to pyridinyl imidazole inhibitors of p38 MAP kinase., Fox T, Coll JT, Xie X, Ford PJ, Germann UA, Porter MD, Pazhanisamy S, Fleming MA, Galullo V, Su MS, Wilson KP, Protein Sci. 1998 Nov;7(11):2249-55. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/9827991 9827991]
</div>
<div class="pdbe-citations 1pme" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Single protein]]
[[Category: Large Structures]]
[[Category: Xie, X.]]
[[Category: Xie X]]
[[Category: Map kinase]]
[[Category: Serine/threonine protein kinase]]
[[Category: Transferase]]
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sat May  3 05:14:56 2008''

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA