1pkg: Difference between revisions
No edit summary |
No edit summary |
||
(17 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== | ==Structure of a c-Kit Kinase Product Complex== | ||
<StructureSection load='1pkg' size='340' side='right'caption='[[1pkg]], [[Resolution|resolution]] 2.90Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1pkg]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1PKG OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1PKG FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.9Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=PTR:O-PHOSPHOTYROSINE'>PTR</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1pkg FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1pkg OCA], [https://pdbe.org/1pkg PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1pkg RCSB], [https://www.ebi.ac.uk/pdbsum/1pkg PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1pkg ProSAT]</span></td></tr> | |||
</table> | |||
== Disease == | |||
[https://www.uniprot.org/uniprot/KIT_HUMAN KIT_HUMAN] Defects in KIT are a cause of piebald trait (PBT) [MIM:[https://omim.org/entry/172800 172800]; also known as piebaldism. PBT is an autosomal dominant genetic developmental abnormality of pigmentation characterized by congenital patches of white skin and hair that lack melanocytes.<ref>PMID:1376329</ref> <ref>PMID:1370874</ref> <ref>PMID:1717985</ref> <ref>PMID:7687267</ref> <ref>PMID:8680409</ref> <ref>PMID:9029028</ref> <ref>PMID:9450866</ref> <ref>PMID:9699740</ref> <ref>PMID:11074500</ref> Defects in KIT are a cause of gastrointestinal stromal tumor (GIST) [MIM:[https://omim.org/entry/606764 606764].<ref>PMID:9029028</ref> <ref>PMID:9697690</ref> <ref>PMID:9438854</ref> <ref>PMID:11505412</ref> <ref>PMID:15824741</ref> Defects in KIT have been associated with testicular germ cell tumor (TGCT) [MIM:[https://omim.org/entry/273300 273300]. A common solid malignancy in males. Germ cell tumors of the testis constitute 95% of all testicular neoplasms.<ref>PMID:9029028</ref> Defects in KIT are a cause of acute myelogenous leukemia (AML) [MIM:[https://omim.org/entry/601626 601626]. AML is a malignant disease in which hematopoietic precursors are arrested in an early stage of development. Note=Somatic mutations that lead to constitutive activation of KIT are detected in AML patients. These mutations fall into two classes, the most common being in-frame internal tandem duplications of variable length in the juxtamembrane region that disrupt the normal regulation of the kinase activity. Likewise, point mutations in the kinase domain can result in a constitutively activated kinase.<ref>PMID:9029028</ref> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/KIT_HUMAN KIT_HUMAN] Tyrosine-protein kinase that acts as cell-surface receptor for the cytokine KITLG/SCF and plays an essential role in the regulation of cell survival and proliferation, hematopoiesis, stem cell maintenance, gametogenesis, mast cell development, migration and function, and in melanogenesis. In response to KITLG/SCF binding, KIT can activate several signaling pathways. Phosphorylates PIK3R1, PLCG1, SH2B2/APS and CBL. Activates the AKT1 signaling pathway by phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase. Activated KIT also transmits signals via GRB2 and activation of RAS, RAF1 and the MAP kinases MAPK1/ERK2 and/or MAPK3/ERK1. Promotes activation of STAT family members STAT1, STAT3, STAT5A and STAT5B. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate. KIT signaling is modulated by protein phosphatases, and by rapid internalization and degradation of the receptor. Activated KIT promotes phosphorylation of the protein phosphatases PTPN6/SHP-1 and PTPRU, and of the transcription factors STAT1, STAT3, STAT5A and STAT5B. Promotes phosphorylation of PIK3R1, CBL, CRK (isoform Crk-II), LYN, MAPK1/ERK2 and/or MAPK3/ERK1, PLCG1, SRC and SHC1.<ref>PMID:7520444</ref> <ref>PMID:9528781</ref> <ref>PMID:10397721</ref> <ref>PMID:12444928</ref> <ref>PMID:12878163</ref> <ref>PMID:12511554</ref> <ref>PMID:17904548</ref> <ref>PMID:19265199</ref> <ref>PMID:21640708</ref> <ref>PMID:21135090</ref> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/pk/1pkg_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1pkg ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The c-Kit proto-oncogene is a receptor protein-tyrosine kinase associated with several highly malignant human cancers. Upon binding its ligand, stem cell factor (SCF), c-Kit forms an active dimer that autophosphorylates itself and activates a signaling cascade that induces cell growth. Disease-causing human mutations that activate SCF-independent constitutive expression of c-Kit are found in acute myelogenous leukemia, human mast cell disease, and gastrointestinal stromal tumors. We report on the phosphorylation state and crystal structure of a c-Kit product complex. The c-Kit structure is in a fully active form, with ordered kinase activation and phosphate-binding loops. These results provide key insights into the molecular basis for c-Kit kinase transactivation to assist in the design of new competitive inhibitors targeting activated mutant forms of c-Kit that are resistant to current chemotherapy regimes. | The c-Kit proto-oncogene is a receptor protein-tyrosine kinase associated with several highly malignant human cancers. Upon binding its ligand, stem cell factor (SCF), c-Kit forms an active dimer that autophosphorylates itself and activates a signaling cascade that induces cell growth. Disease-causing human mutations that activate SCF-independent constitutive expression of c-Kit are found in acute myelogenous leukemia, human mast cell disease, and gastrointestinal stromal tumors. We report on the phosphorylation state and crystal structure of a c-Kit product complex. The c-Kit structure is in a fully active form, with ordered kinase activation and phosphate-binding loops. These results provide key insights into the molecular basis for c-Kit kinase transactivation to assist in the design of new competitive inhibitors targeting activated mutant forms of c-Kit that are resistant to current chemotherapy regimes. | ||
Structure of a c-kit product complex reveals the basis for kinase transactivation.,Mol CD, Lim KB, Sridhar V, Zou H, Chien EY, Sang BC, Nowakowski J, Kassel DB, Cronin CN, McRee DE J Biol Chem. 2003 Aug 22;278(34):31461-4. Epub 2003 Jun 24. PMID:12824176<ref>PMID:12824176</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 1pkg" style="background-color:#fffaf0;"></div> | |||
== | == References == | ||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Chien | [[Category: Chien EYT]] | ||
[[Category: Cronin | [[Category: Cronin CN]] | ||
[[Category: Kassel | [[Category: Kassel DB]] | ||
[[Category: Lim | [[Category: Lim KB]] | ||
[[Category: McRee | [[Category: McRee DE]] | ||
[[Category: Mol | [[Category: Mol CD]] | ||
[[Category: Nowakowski | [[Category: Nowakowski J]] | ||
[[Category: Sang | [[Category: Sang B-C]] | ||
[[Category: Sridhar | [[Category: Sridhar V]] | ||
[[Category: Zou | [[Category: Zou H]] | ||
Latest revision as of 07:48, 17 October 2024
Structure of a c-Kit Kinase Product ComplexStructure of a c-Kit Kinase Product Complex
Structural highlights
DiseaseKIT_HUMAN Defects in KIT are a cause of piebald trait (PBT) [MIM:172800; also known as piebaldism. PBT is an autosomal dominant genetic developmental abnormality of pigmentation characterized by congenital patches of white skin and hair that lack melanocytes.[1] [2] [3] [4] [5] [6] [7] [8] [9] Defects in KIT are a cause of gastrointestinal stromal tumor (GIST) [MIM:606764.[10] [11] [12] [13] [14] Defects in KIT have been associated with testicular germ cell tumor (TGCT) [MIM:273300. A common solid malignancy in males. Germ cell tumors of the testis constitute 95% of all testicular neoplasms.[15] Defects in KIT are a cause of acute myelogenous leukemia (AML) [MIM:601626. AML is a malignant disease in which hematopoietic precursors are arrested in an early stage of development. Note=Somatic mutations that lead to constitutive activation of KIT are detected in AML patients. These mutations fall into two classes, the most common being in-frame internal tandem duplications of variable length in the juxtamembrane region that disrupt the normal regulation of the kinase activity. Likewise, point mutations in the kinase domain can result in a constitutively activated kinase.[16] FunctionKIT_HUMAN Tyrosine-protein kinase that acts as cell-surface receptor for the cytokine KITLG/SCF and plays an essential role in the regulation of cell survival and proliferation, hematopoiesis, stem cell maintenance, gametogenesis, mast cell development, migration and function, and in melanogenesis. In response to KITLG/SCF binding, KIT can activate several signaling pathways. Phosphorylates PIK3R1, PLCG1, SH2B2/APS and CBL. Activates the AKT1 signaling pathway by phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase. Activated KIT also transmits signals via GRB2 and activation of RAS, RAF1 and the MAP kinases MAPK1/ERK2 and/or MAPK3/ERK1. Promotes activation of STAT family members STAT1, STAT3, STAT5A and STAT5B. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate. KIT signaling is modulated by protein phosphatases, and by rapid internalization and degradation of the receptor. Activated KIT promotes phosphorylation of the protein phosphatases PTPN6/SHP-1 and PTPRU, and of the transcription factors STAT1, STAT3, STAT5A and STAT5B. Promotes phosphorylation of PIK3R1, CBL, CRK (isoform Crk-II), LYN, MAPK1/ERK2 and/or MAPK3/ERK1, PLCG1, SRC and SHC1.[17] [18] [19] [20] [21] [22] [23] [24] [25] [26] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe c-Kit proto-oncogene is a receptor protein-tyrosine kinase associated with several highly malignant human cancers. Upon binding its ligand, stem cell factor (SCF), c-Kit forms an active dimer that autophosphorylates itself and activates a signaling cascade that induces cell growth. Disease-causing human mutations that activate SCF-independent constitutive expression of c-Kit are found in acute myelogenous leukemia, human mast cell disease, and gastrointestinal stromal tumors. We report on the phosphorylation state and crystal structure of a c-Kit product complex. The c-Kit structure is in a fully active form, with ordered kinase activation and phosphate-binding loops. These results provide key insights into the molecular basis for c-Kit kinase transactivation to assist in the design of new competitive inhibitors targeting activated mutant forms of c-Kit that are resistant to current chemotherapy regimes. Structure of a c-kit product complex reveals the basis for kinase transactivation.,Mol CD, Lim KB, Sridhar V, Zou H, Chien EY, Sang BC, Nowakowski J, Kassel DB, Cronin CN, McRee DE J Biol Chem. 2003 Aug 22;278(34):31461-4. Epub 2003 Jun 24. PMID:12824176[27] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|