1ip5: Difference between revisions
No edit summary |
No edit summary |
||
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==G105A HUMAN LYSOZYME== | ==G105A HUMAN LYSOZYME== | ||
<StructureSection load='1ip5' size='340' side='right' caption='[[1ip5]], [[Resolution|resolution]] 1.80Å' scene=''> | <StructureSection load='1ip5' size='340' side='right'caption='[[1ip5]], [[Resolution|resolution]] 1.80Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1ip5]] is a 1 chain structure with sequence from [ | <table><tr><td colspan='2'>[[1ip5]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1IP5 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1IP5 FirstGlance]. <br> | ||
</td></tr><tr><td class="sblockLbl"><b>[[ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.8Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NA:SODIUM+ION'>NA</scene></td></tr> | |||
<tr><td class="sblockLbl"><b> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1ip5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ip5 OCA], [https://pdbe.org/1ip5 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1ip5 RCSB], [https://www.ebi.ac.uk/pdbsum/1ip5 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1ip5 ProSAT]</span></td></tr> | ||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | </table> | ||
<table> | |||
== Disease == | == Disease == | ||
[ | [https://www.uniprot.org/uniprot/LYSC_HUMAN LYSC_HUMAN] Defects in LYZ are a cause of amyloidosis type 8 (AMYL8) [MIM:[https://omim.org/entry/105200 105200]; also known as systemic non-neuropathic amyloidosis or Ostertag-type amyloidosis. AMYL8 is a hereditary generalized amyloidosis due to deposition of apolipoprotein A1, fibrinogen and lysozyme amyloids. Viscera are particularly affected. There is no involvement of the nervous system. Clinical features include renal amyloidosis resulting in nephrotic syndrome, arterial hypertension, hepatosplenomegaly, cholestasis, petechial skin rash.<ref>PMID:8464497</ref> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/LYSC_HUMAN LYSC_HUMAN] Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents. | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Check<jmol> | Check<jmol> | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ip/1ip5_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ip/1ip5_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ip5 ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
Line 30: | Line 30: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | </div> | ||
<div class="pdbe-citations 1ip5" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== | ||
Line 38: | Line 39: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Takano | [[Category: Takano K]] | ||
[[Category: Yamagata | [[Category: Yamagata Y]] | ||
[[Category: Yutani | [[Category: Yutani K]] | ||
Latest revision as of 07:37, 17 October 2024
G105A HUMAN LYSOZYMEG105A HUMAN LYSOZYME
Structural highlights
DiseaseLYSC_HUMAN Defects in LYZ are a cause of amyloidosis type 8 (AMYL8) [MIM:105200; also known as systemic non-neuropathic amyloidosis or Ostertag-type amyloidosis. AMYL8 is a hereditary generalized amyloidosis due to deposition of apolipoprotein A1, fibrinogen and lysozyme amyloids. Viscera are particularly affected. There is no involvement of the nervous system. Clinical features include renal amyloidosis resulting in nephrotic syndrome, arterial hypertension, hepatosplenomegaly, cholestasis, petechial skin rash.[1] FunctionLYSC_HUMAN Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedOur previous study of six non-Gly to Gly/Ala mutant human lysozymes in a left-handed helical region showed that only one non-Gly residue at a rigid site had unfavorable strain energy as compared with Gly at the same position (Takano et al., Proteins 2001; 44:233-243). To further examine the role of left-handed residues in the conformational stability of a protein, we constructed ten Gly to Ala mutant human lysozymes. Most Gly residues in human lysozyme are located in the left-handed helix region. The thermodynamic parameters for denaturation and crystal structures were determined by differential scanning calorimetry and X-ray analysis, respectively. The difference in denaturation Gibbs energy (DeltaDeltaG) for the ten Gly to Ala mutants ranged from + 1.9 to -7.5 kJ/mol, indicating that the effect of the mutation depends on the environment of the residue. We confirm that Gly in a left-handed region is more favorable at rigid sites than non-Gly, but there is little difference in energetic cost between Gly and non-Gly at flexible sites. The present results indicate that dihedral angles in the backbone conformation and also the flexibility at the position should be considered for analyses of protein stability, and protein structural determination, prediction, and design. Role of amino acid residues in left-handed helical conformation for the conformational stability of a protein.,Takano K, Yamagata Y, Yutani K Proteins. 2001 Nov 15;45(3):274-80. PMID:11599030[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|