1b7l: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(14 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Seed}}
[[Image:1b7l.png|left|200px]]


<!--
==VERIFICATION OF SPMP USING MUTANT HUMAN LYSOZYMES==
The line below this paragraph, containing "STRUCTURE_1b7l", creates the "Structure Box" on the page.
<StructureSection load='1b7l' size='340' side='right'caption='[[1b7l]], [[Resolution|resolution]] 1.80&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)  
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[1b7l]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1B7L OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1B7L FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.8&#8491;</td></tr>
-->
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NA:SODIUM+ION'>NA</scene></td></tr>
{{STRUCTURE_1b7l|  PDB=1b7l  |  SCENE=  }}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1b7l FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1b7l OCA], [https://pdbe.org/1b7l PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1b7l RCSB], [https://www.ebi.ac.uk/pdbsum/1b7l PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1b7l ProSAT]</span></td></tr>
</table>
== Disease ==
[https://www.uniprot.org/uniprot/LYSC_HUMAN LYSC_HUMAN] Defects in LYZ are a cause of amyloidosis type 8 (AMYL8) [MIM:[https://omim.org/entry/105200 105200]; also known as systemic non-neuropathic amyloidosis or Ostertag-type amyloidosis. AMYL8 is a hereditary generalized amyloidosis due to deposition of apolipoprotein A1, fibrinogen and lysozyme amyloids. Viscera are particularly affected. There is no involvement of the nervous system. Clinical features include renal amyloidosis resulting in nephrotic syndrome, arterial hypertension, hepatosplenomegaly, cholestasis, petechial skin rash.<ref>PMID:8464497</ref>
== Function ==
[https://www.uniprot.org/uniprot/LYSC_HUMAN LYSC_HUMAN] Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents.
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/b7/1b7l_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1b7l ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The stability profile of mutant protein (SPMP) (Ota,M., Kanaya,S. and Nishikawa,K., 1995, J. Mol. Biol., 248, 733-738) estimates the changes in conformational stability due to single amino acid substitutions using a pseudo-energy potential developed for evaluating structure-sequence compatibility in the structure prediction method, the 3D-1D compatibility evaluation. Nine mutant human lysozymes expected to significantly increase in stability from SPMP were constructed, in order to experimentally verify the reliability of SPMP. The thermodynamic parameters for denaturation and crystal structures of these mutant proteins were determined. One mutant protein was stabilized as expected, compared with the wild-type protein. However, the others were not stabilized even though the structural changes were subtle, indicating that SPMP overestimates the increase in stability or underestimates negative effects due to substitution. The stability changes in the other mutant human lysozymes previously reported were also analyzed by SPMP. The correlation of the stability changes between the experiment and prediction depended on the types of substitution: there were some correlations for proline mutants and cavity-creating mutants, but no correlation for mutants related to side-chain hydrogen bonds. The present results may indicate some additional factors that should be considered in the calculation of SPMP, suggesting that SPMP can be refined further.


===VERIFICATION OF SPMP USING MUTANT HUMAN LYSOZYMES===
Experimental verification of the 'stability profile of mutant protein' (SPMP) data using mutant human lysozymes.,Takano K, Ota M, Ogasahara K, Yamagata Y, Nishikawa K, Yutani K Protein Eng. 1999 Aug;12(8):663-72. PMID:10469827<ref>PMID:10469827</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1b7l" style="background-color:#fffaf0;"></div>


<!--
==See Also==
The line below this paragraph, {{ABSTRACT_PUBMED_10469827}}, adds the Publication Abstract to the page
*[[Lysozyme 3D structures|Lysozyme 3D structures]]
(as it appears on PubMed at http://www.pubmed.gov), where 10469827 is the PubMed ID number.
== References ==
-->
<references/>
{{ABSTRACT_PUBMED_10469827}}
__TOC__
 
</StructureSection>
==About this Structure==
1B7L is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1B7L OCA].
 
==Reference==
Experimental verification of the 'stability profile of mutant protein' (SPMP) data using mutant human lysozymes., Takano K, Ota M, Ogasahara K, Yamagata Y, Nishikawa K, Yutani K, Protein Eng. 1999 Aug;12(8):663-72. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/10469827 10469827]
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Lysozyme]]
[[Category: Large Structures]]
[[Category: Single protein]]
[[Category: Nishikawa K]]
[[Category: Nishikawa, K.]]
[[Category: Ogasahara K]]
[[Category: Ogasahara, K.]]
[[Category: Ota M]]
[[Category: Ota, M.]]
[[Category: Takano K]]
[[Category: Takano, K.]]
[[Category: Yamagata Y]]
[[Category: Yamagata, Y.]]
[[Category: Yutani K]]
[[Category: Yutani, K.]]
[[Category: Human lysozyme]]
[[Category: Mutant stability]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Mon Jun 30 18:28:58 2008''

Latest revision as of 07:23, 17 October 2024

VERIFICATION OF SPMP USING MUTANT HUMAN LYSOZYMESVERIFICATION OF SPMP USING MUTANT HUMAN LYSOZYMES

Structural highlights

1b7l is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.8Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

LYSC_HUMAN Defects in LYZ are a cause of amyloidosis type 8 (AMYL8) [MIM:105200; also known as systemic non-neuropathic amyloidosis or Ostertag-type amyloidosis. AMYL8 is a hereditary generalized amyloidosis due to deposition of apolipoprotein A1, fibrinogen and lysozyme amyloids. Viscera are particularly affected. There is no involvement of the nervous system. Clinical features include renal amyloidosis resulting in nephrotic syndrome, arterial hypertension, hepatosplenomegaly, cholestasis, petechial skin rash.[1]

Function

LYSC_HUMAN Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The stability profile of mutant protein (SPMP) (Ota,M., Kanaya,S. and Nishikawa,K., 1995, J. Mol. Biol., 248, 733-738) estimates the changes in conformational stability due to single amino acid substitutions using a pseudo-energy potential developed for evaluating structure-sequence compatibility in the structure prediction method, the 3D-1D compatibility evaluation. Nine mutant human lysozymes expected to significantly increase in stability from SPMP were constructed, in order to experimentally verify the reliability of SPMP. The thermodynamic parameters for denaturation and crystal structures of these mutant proteins were determined. One mutant protein was stabilized as expected, compared with the wild-type protein. However, the others were not stabilized even though the structural changes were subtle, indicating that SPMP overestimates the increase in stability or underestimates negative effects due to substitution. The stability changes in the other mutant human lysozymes previously reported were also analyzed by SPMP. The correlation of the stability changes between the experiment and prediction depended on the types of substitution: there were some correlations for proline mutants and cavity-creating mutants, but no correlation for mutants related to side-chain hydrogen bonds. The present results may indicate some additional factors that should be considered in the calculation of SPMP, suggesting that SPMP can be refined further.

Experimental verification of the 'stability profile of mutant protein' (SPMP) data using mutant human lysozymes.,Takano K, Ota M, Ogasahara K, Yamagata Y, Nishikawa K, Yutani K Protein Eng. 1999 Aug;12(8):663-72. PMID:10469827[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Pepys MB, Hawkins PN, Booth DR, Vigushin DM, Tennent GA, Soutar AK, Totty N, Nguyen O, Blake CC, Terry CJ, et al.. Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature. 1993 Apr 8;362(6420):553-7. PMID:8464497 doi:http://dx.doi.org/10.1038/362553a0
  2. Takano K, Ota M, Ogasahara K, Yamagata Y, Nishikawa K, Yutani K. Experimental verification of the 'stability profile of mutant protein' (SPMP) data using mutant human lysozymes. Protein Eng. 1999 Aug;12(8):663-72. PMID:10469827

1b7l, resolution 1.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA