2fug: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(14 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:2fug.gif|left|200px]]
<!--
The line below this paragraph, containing "STRUCTURE_2fug", creates the "Structure Box" on the page.
You may change the PDB parameter (which sets the PDB file loaded into the applet)
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
or leave the SCENE parameter empty for the default display.
-->
{{STRUCTURE_2fug|  PDB=2fug  |  SCENE=  }}
'''Crystal structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus'''


==Crystal structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus==
<StructureSection load='2fug' size='340' side='right'caption='[[2fug]], [[Resolution|resolution]] 3.30&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[2fug]] is a 32 chain structure with sequence from [https://en.wikipedia.org/wiki/Thermus_thermophilus_HB8 Thermus thermophilus HB8]. The December 2011 RCSB PDB [https://pdb.rcsb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/index.html Molecule of the Month] feature on ''Complex I''  by David Goodsell is [https://dx.doi.org/10.2210/rcsb_pdb/mom_2011_12 10.2210/rcsb_pdb/mom_2011_12]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2FUG OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2FUG FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.3&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FES:FE2/S2+(INORGANIC)+CLUSTER'>FES</scene>, <scene name='pdbligand=FMN:FLAVIN+MONONUCLEOTIDE'>FMN</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2fug FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2fug OCA], [https://pdbe.org/2fug PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2fug RCSB], [https://www.ebi.ac.uk/pdbsum/2fug PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2fug ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/NQO2_THET8 NQO2_THET8] NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient required for the synthesis of ATP.
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/fu/2fug_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2fug ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Respiratory complex I plays a central role in cellular energy production in bacteria and mitochondria. Its dysfunction is implicated in many human neurodegenerative diseases, as well as in aging. The crystal structure of the hydrophilic domain (peripheral arm) of complex I from Thermus thermophilus has been solved at 3.3 angstrom resolution. This subcomplex consists of eight subunits and contains all the redox centers of the enzyme, including nine iron-sulfur clusters. The primary electron acceptor, flavin-mononucleotide, is within electron transfer distance of cluster N3, leading to the main redox pathway, and of the distal cluster N1a, a possible antioxidant. The structure reveals new aspects of the mechanism and evolution of the enzyme. The terminal cluster N2 is coordinated, uniquely, by two consecutive cysteines. The novel subunit Nqo15 has a similar fold to the mitochondrial iron chaperone frataxin, and it may be involved in iron-sulfur cluster regeneration in the complex.


==Overview==
Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus.,Sazanov LA, Hinchliffe P Science. 2006 Mar 10;311(5766):1430-6. Epub 2006 Feb 9. PMID:16469879<ref>PMID:16469879</ref>
Respiratory complex I plays a central role in cellular energy production in bacteria and mitochondria. Its dysfunction is implicated in many human neurodegenerative diseases, as well as in aging. The crystal structure of the hydrophilic domain (peripheral arm) of complex I from Thermus thermophilus has been solved at 3.3 angstrom resolution. This subcomplex consists of eight subunits and contains all the redox centers of the enzyme, including nine iron-sulfur clusters. The primary electron acceptor, flavin-mononucleotide, is within electron transfer distance of cluster N3, leading to the main redox pathway, and of the distal cluster N1a, a possible antioxidant. The structure reveals new aspects of the mechanism and evolution of the enzyme. The terminal cluster N2 is coordinated, uniquely, by two consecutive cysteines. The novel subunit Nqo15 has a similar fold to the mitochondrial iron chaperone frataxin, and it may be involved in iron-sulfur cluster regeneration in the complex.


==About this Structure==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
2FUG is a [[Protein complex]] structure of sequences from [http://en.wikipedia.org/wiki/Thermus_thermophilus Thermus thermophilus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2FUG OCA].
</div>
<div class="pdbe-citations 2fug" style="background-color:#fffaf0;"></div>


==Reference==
==See Also==
Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus., Sazanov LA, Hinchliffe P, Science. 2006 Mar 10;311(5766):1430-6. Epub 2006 Feb 9. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/16469879 16469879]
*[[NADH-quinone oxidoreductase|NADH-quinone oxidoreductase]]
[[Category: Protein complex]]
== References ==
[[Category: Thermus thermophilus]]
<references/>
[[Category: Hinchliffe, P.]]
__TOC__
[[Category: Sazanov, L A.]]
</StructureSection>
[[Category: Electron transport]]
[[Category: Complex I]]
[[Category: Oxidoreductase]]
[[Category: Large Structures]]
[[Category: Respiratory chain]]
[[Category: RCSB PDB Molecule of the Month]]
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun May  4 04:19:24 2008''
[[Category: Thermus thermophilus HB8]]
[[Category: Hinchliffe P]]
[[Category: Sazanov LA]]

Latest revision as of 10:37, 9 October 2024

Crystal structure of the hydrophilic domain of respiratory complex I from Thermus thermophilusCrystal structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus

Structural highlights

2fug is a 32 chain structure with sequence from Thermus thermophilus HB8. The December 2011 RCSB PDB Molecule of the Month feature on Complex I by David Goodsell is 10.2210/rcsb_pdb/mom_2011_12. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3.3Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

NQO2_THET8 NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient required for the synthesis of ATP.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Respiratory complex I plays a central role in cellular energy production in bacteria and mitochondria. Its dysfunction is implicated in many human neurodegenerative diseases, as well as in aging. The crystal structure of the hydrophilic domain (peripheral arm) of complex I from Thermus thermophilus has been solved at 3.3 angstrom resolution. This subcomplex consists of eight subunits and contains all the redox centers of the enzyme, including nine iron-sulfur clusters. The primary electron acceptor, flavin-mononucleotide, is within electron transfer distance of cluster N3, leading to the main redox pathway, and of the distal cluster N1a, a possible antioxidant. The structure reveals new aspects of the mechanism and evolution of the enzyme. The terminal cluster N2 is coordinated, uniquely, by two consecutive cysteines. The novel subunit Nqo15 has a similar fold to the mitochondrial iron chaperone frataxin, and it may be involved in iron-sulfur cluster regeneration in the complex.

Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus.,Sazanov LA, Hinchliffe P Science. 2006 Mar 10;311(5766):1430-6. Epub 2006 Feb 9. PMID:16469879[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Sazanov LA, Hinchliffe P. Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science. 2006 Mar 10;311(5766):1430-6. Epub 2006 Feb 9. PMID:16469879

2fug, resolution 3.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA