1szd: Difference between revisions
No edit summary |
No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 3: | Line 3: | ||
<StructureSection load='1szd' size='340' side='right'caption='[[1szd]], [[Resolution|resolution]] 1.50Å' scene=''> | <StructureSection load='1szd' size='340' side='right'caption='[[1szd]], [[Resolution|resolution]] 1.50Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1szd]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/ | <table><tr><td colspan='2'>[[1szd]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae] and [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae_S288C Saccharomyces cerevisiae S288C]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1SZD OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1SZD FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.5Å</td></tr> | ||
<tr id=' | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ALY:N(6)-ACETYLLYSINE'>ALY</scene>, <scene name='pdbligand=APR:ADENOSINE-5-DIPHOSPHORIBOSE'>APR</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | ||
< | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1szd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1szd OCA], [https://pdbe.org/1szd PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1szd RCSB], [https://www.ebi.ac.uk/pdbsum/1szd PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1szd ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1szd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1szd OCA], [https://pdbe.org/1szd PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1szd RCSB], [https://www.ebi.ac.uk/pdbsum/1szd PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1szd ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/HST2_YEAST HST2_YEAST] NAD-dependent histone deacetylase that is involved in nuclear silencing events. Derepresses subtelomeric silencing and increases repression in nucleolar (rDNA) silencing. Its function is negatively regulated by active nuclear export.<ref>PMID:10811920</ref> <ref>PMID:11106374</ref> <ref>PMID:11226170</ref> <ref>PMID:15274642</ref> <ref>PMID:17110954</ref> | |||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 16: | Line 15: | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/sz/1szd_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/sz/1szd_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
Line 34: | Line 33: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: | [[Category: Saccharomyces cerevisiae]] | ||
[[Category: | [[Category: Saccharomyces cerevisiae S288C]] | ||
[[Category: | [[Category: Chai X]] | ||
[[Category: | [[Category: Harshaw R]] | ||
[[Category: | [[Category: Marmorstein R]] | ||
[[Category: | [[Category: Zhao K]] | ||
Latest revision as of 10:27, 9 October 2024
Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD+-dependent Sir2 histone/protein deacetylasesStructural basis for nicotinamide cleavage and ADP-ribose transfer by NAD+-dependent Sir2 histone/protein deacetylases
Structural highlights
FunctionHST2_YEAST NAD-dependent histone deacetylase that is involved in nuclear silencing events. Derepresses subtelomeric silencing and increases repression in nucleolar (rDNA) silencing. Its function is negatively regulated by active nuclear export.[1] [2] [3] [4] [5] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedSir2 enzymes are broadly conserved from bacteria to humans and have been implicated to play roles in gene silencing, DNA repair, genome stability, longevity, metabolism, and cell physiology. These enzymes bind NAD(+) and acetyllysine within protein targets and generate lysine, 2'-O-acetyl-ADP-ribose, and nicotinamide products. To provide structural insights into the chemistry catalyzed by Sir2 proteins we report the high-resolution ternary structure of yeast Hst2 (homologue of Sir two 2) with an acetyllysine histone H4 peptide and a nonhydrolyzable NAD(+) analogue, carba-NAD(+), as well as an analogous ternary complex with a reaction intermediate analog formed immediately after nicotinamide hydrolysis, ADP-ribose. The ternary complex with carba-NAD(+) reveals that the nicotinamide group makes stabilizing interactions within a binding pocket harboring conserved Sir2 residues. Moreover, an asparagine residue, N116, strictly conserved within Sir2 proteins and shown to be essential for nicotinamide exchange, is in position to stabilize the oxocarbenium intermediate that has been proposed to proceed the hydrolysis of nicotinamide. A comparison of this structure with the ADP-ribose ternary complex and a previously reported ternary complex with the 2'-O-acetyl-ADP-ribose reaction product reveals that the ribose ring of the cofactor and the highly conserved beta1-alpha2 loop of the protein undergo significant structural rearrangements to facilitate the ordered NAD(+) reactions of nicotinamide cleavage and ADP-ribose transfer to acetate. Together, these studies provide insights into the chemistry of NAD(+) cleavage and acetylation by Sir2 proteins and have implications for the design of Sir2-specific regulatory molecules. Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD(+)-dependent Sir2 histone/protein deacetylases.,Zhao K, Harshaw R, Chai X, Marmorstein R Proc Natl Acad Sci U S A. 2004 Jun 8;101(23):8563-8. Epub 2004 May 18. PMID:15150415[6] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|