1b5x: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Seed}}
[[Image:1b5x.png|left|200px]]


<!--
==Contribution of hydrogen bonds to the conformational stability of human lysozyme: calorimetry and x-ray analysis of six ser->ala mutants==
The line below this paragraph, containing "STRUCTURE_1b5x", creates the "Structure Box" on the page.
<StructureSection load='1b5x' size='340' side='right'caption='[[1b5x]], [[Resolution|resolution]] 2.00&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)  
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[1b5x]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1B5X OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1B5X FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2&#8491;</td></tr>
-->
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NA:SODIUM+ION'>NA</scene></td></tr>
{{STRUCTURE_1b5x|  PDB=1b5x  |  SCENE=  }}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1b5x FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1b5x OCA], [https://pdbe.org/1b5x PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1b5x RCSB], [https://www.ebi.ac.uk/pdbsum/1b5x PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1b5x ProSAT]</span></td></tr>
</table>
== Disease ==
[https://www.uniprot.org/uniprot/LYSC_HUMAN LYSC_HUMAN] Defects in LYZ are a cause of amyloidosis type 8 (AMYL8) [MIM:[https://omim.org/entry/105200 105200]; also known as systemic non-neuropathic amyloidosis or Ostertag-type amyloidosis. AMYL8 is a hereditary generalized amyloidosis due to deposition of apolipoprotein A1, fibrinogen and lysozyme amyloids. Viscera are particularly affected. There is no involvement of the nervous system. Clinical features include renal amyloidosis resulting in nephrotic syndrome, arterial hypertension, hepatosplenomegaly, cholestasis, petechial skin rash.<ref>PMID:8464497</ref>
== Function ==
[https://www.uniprot.org/uniprot/LYSC_HUMAN LYSC_HUMAN] Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents.
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/b5/1b5x_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1b5x ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
To further examine the contribution of hydrogen bonds to the conformational stability of the human lysozyme, six Ser to Ala mutants were constructed. The thermodynamic parameters for denaturation of these six Ser mutant proteins were investigated by differential scanning calorimetry (DSC), and the crystal structures were determined by X-ray analysis. The denaturation Gibbs energy (DeltaG) of the Ser mutant proteins was changed from 2.0 to -5.7 kJ/mol, compared to that of the wild-type protein. With an analysis in which some factors that affected the stability due to mutation were considered, the contribution of hydrogen bonds to the stability (Delta DeltaGHB) was extracted on the basis of the structures of the mutant proteins. The results showed that hydrogen bonds between protein atoms and between a protein atom and a water bound with the protein molecule favorably contribute to the protein stability. The net contribution of one intramolecular hydrogen bond to protein stability (DeltaGHB) was 8.9 +/- 2.6 kJ/mol on average. However, the contribution to the protein stability of hydrogen bonds between a protein atom and a bound water molecule was smaller than that for a bond between protein atoms.


===Contribution of hydrogen bonds to the conformational stability of human lysozyme: calorimetry and x-ray analysis of six ser->ala mutants===
Contribution of hydrogen bonds to the conformational stability of human lysozyme: calorimetry and X-ray analysis of six Ser --&gt; Ala mutants.,Takano K, Yamagata Y, Kubota M, Funahashi J, Fujii S, Yutani K Biochemistry. 1999 May 18;38(20):6623-9. PMID:10350481<ref>PMID:10350481</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1b5x" style="background-color:#fffaf0;"></div>


<!--
==See Also==
The line below this paragraph, {{ABSTRACT_PUBMED_10350481}}, adds the Publication Abstract to the page
*[[Lysozyme 3D structures|Lysozyme 3D structures]]
(as it appears on PubMed at http://www.pubmed.gov), where 10350481 is the PubMed ID number.
== References ==
-->
<references/>
{{ABSTRACT_PUBMED_10350481}}
__TOC__
 
</StructureSection>
==About this Structure==
1B5X is a 1 chain structure of sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1B5X OCA].
 
==Reference==
<ref group="xtra">PMID:10350481</ref><references group="xtra"/>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Lysozyme]]
[[Category: Large Structures]]
[[Category: Fujii, S.]]
[[Category: Fujii S]]
[[Category: Funahashi, J.]]
[[Category: Funahashi J]]
[[Category: Kubota, M.]]
[[Category: Kubota M]]
[[Category: Takano, K.]]
[[Category: Takano K]]
[[Category: Yamagata, Y.]]
[[Category: Yamagata Y]]
[[Category: Yutani, K.]]
[[Category: Yutani K]]
[[Category: Hydrogen bond]]
[[Category: Stability]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Tue Feb 17 20:54:45 2009''

Latest revision as of 10:12, 9 October 2024

Contribution of hydrogen bonds to the conformational stability of human lysozyme: calorimetry and x-ray analysis of six ser->ala mutantsContribution of hydrogen bonds to the conformational stability of human lysozyme: calorimetry and x-ray analysis of six ser->ala mutants

Structural highlights

1b5x is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

LYSC_HUMAN Defects in LYZ are a cause of amyloidosis type 8 (AMYL8) [MIM:105200; also known as systemic non-neuropathic amyloidosis or Ostertag-type amyloidosis. AMYL8 is a hereditary generalized amyloidosis due to deposition of apolipoprotein A1, fibrinogen and lysozyme amyloids. Viscera are particularly affected. There is no involvement of the nervous system. Clinical features include renal amyloidosis resulting in nephrotic syndrome, arterial hypertension, hepatosplenomegaly, cholestasis, petechial skin rash.[1]

Function

LYSC_HUMAN Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

To further examine the contribution of hydrogen bonds to the conformational stability of the human lysozyme, six Ser to Ala mutants were constructed. The thermodynamic parameters for denaturation of these six Ser mutant proteins were investigated by differential scanning calorimetry (DSC), and the crystal structures were determined by X-ray analysis. The denaturation Gibbs energy (DeltaG) of the Ser mutant proteins was changed from 2.0 to -5.7 kJ/mol, compared to that of the wild-type protein. With an analysis in which some factors that affected the stability due to mutation were considered, the contribution of hydrogen bonds to the stability (Delta DeltaGHB) was extracted on the basis of the structures of the mutant proteins. The results showed that hydrogen bonds between protein atoms and between a protein atom and a water bound with the protein molecule favorably contribute to the protein stability. The net contribution of one intramolecular hydrogen bond to protein stability (DeltaGHB) was 8.9 +/- 2.6 kJ/mol on average. However, the contribution to the protein stability of hydrogen bonds between a protein atom and a bound water molecule was smaller than that for a bond between protein atoms.

Contribution of hydrogen bonds to the conformational stability of human lysozyme: calorimetry and X-ray analysis of six Ser --> Ala mutants.,Takano K, Yamagata Y, Kubota M, Funahashi J, Fujii S, Yutani K Biochemistry. 1999 May 18;38(20):6623-9. PMID:10350481[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Pepys MB, Hawkins PN, Booth DR, Vigushin DM, Tennent GA, Soutar AK, Totty N, Nguyen O, Blake CC, Terry CJ, et al.. Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature. 1993 Apr 8;362(6420):553-7. PMID:8464497 doi:http://dx.doi.org/10.1038/362553a0
  2. Takano K, Yamagata Y, Kubota M, Funahashi J, Fujii S, Yutani K. Contribution of hydrogen bonds to the conformational stability of human lysozyme: calorimetry and X-ray analysis of six Ser --> Ala mutants. Biochemistry. 1999 May 18;38(20):6623-9. PMID:10350481 doi:10.1021/bi9901228

1b5x, resolution 2.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA