4hpi: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
New page: '''Unreleased structure''' The entry 4hpi is ON HOLD Authors: Naoyuki, U., Tomoyuki, N., Takayuki, O., Tamo, F. Description: Crystal Structure of Hen Egg White Lysozyme complex with GN...
 
No edit summary
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''Unreleased structure'''


The entry 4hpi is ON HOLD
==Crystal Structure of Hen Egg White Lysozyme complex with GN2-M==
<StructureSection load='4hpi' size='340' side='right'caption='[[4hpi]], [[Resolution|resolution]] 1.19&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[4hpi]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Gallus_gallus Gallus gallus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4HPI OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4HPI FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.19&#8491;</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4hpi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4hpi OCA], [https://pdbe.org/4hpi PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4hpi RCSB], [https://www.ebi.ac.uk/pdbsum/4hpi PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4hpi ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/LYSC_CHICK LYSC_CHICK] Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents. Has bacteriolytic activity against M.luteus.<ref>PMID:22044478</ref>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
4-O-beta-Di-N-acetylchitobiosyl moranoline (2) and 4-O-beta-tri-N-acetylchitotriosyl moranoline (3) were produced by lysozyme-mediated transglycosylation from the substrates tetra-N-acetylchitotetraose, (GlcNAc)4, and moranoline, and the binding modes of 2 and 3 to hen egg white lysozyme (HEWL) was examined by inhibition kinetics, isothermal titration calorimetry (ITC), and x-ray crystallography. Compounds 2 and 3 specifically bound to HEWL, acting as competitive inhibitors with Ki values of 2.01 x 10(-5) and 1.84 x 10(-6) m, respectively. From ITC analysis, the binding of 3 was found to be driven by favorable enthalpy change (DeltaHr degrees ), which is similar to those obtained for 2 and (GlcNAc)4. However, the entropy loss (-TDeltaSr degrees ) for the binding of 3 was smaller than those of 2 and (GlcNAc)4. Thus the binding of 3 was found to be more favorable than those of the others. Judging from the Kd value of 3 (760 nm), the compound appears to have the highest affinity among the lysozyme inhibitors identified to date. X-ray crystal structure of HEWL in a complex with 3 showed that compound 3 binds to subsites -4 to -1 and the moranoline moiety adopts an undistorted (4)C1 chair conformation almost overlapping with the -1 sugar covalently bound to Asp-52 of HEWL (Vocadlo, Davies, G. J., Laine, R., and Withers, S. G. (2001) Nature 412, 835-838). From these results, we concluded that compound 3 serves as a transition-state analogue for lysozyme providing additional evidence supporting the covalent glycosyl-enzyme intermediate in the catalytic reaction.


Authors: Naoyuki, U., Tomoyuki, N., Takayuki, O., Tamo, F.
A novel transition-state analogue for lysozyme, 4-O-beta-tri-N-acetylchitotriosyl moranoline, provided evidence supporting the covalent glycosyl-enzyme intermediate.,Ogata M, Umemoto N, Ohnuma T, Numata T, Suzuki A, Usui T, Fukamizo T J Biol Chem. 2013 Mar 1;288(9):6072-82. doi: 10.1074/jbc.M112.439281. Epub 2013, Jan 9. PMID:23303182<ref>PMID:23303182</ref>


Description: Crystal Structure of Hen Egg White Lysozyme complex with GN2-M
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 4hpi" style="background-color:#fffaf0;"></div>
 
==See Also==
*[[Lysozyme 3D structures|Lysozyme 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Gallus gallus]]
[[Category: Large Structures]]
[[Category: Fukamizo T]]
[[Category: Numata T]]
[[Category: Ohnuma T]]
[[Category: Umemoto N]]

Latest revision as of 09:15, 11 September 2024

Crystal Structure of Hen Egg White Lysozyme complex with GN2-MCrystal Structure of Hen Egg White Lysozyme complex with GN2-M

Structural highlights

4hpi is a 1 chain structure with sequence from Gallus gallus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.19Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

LYSC_CHICK Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents. Has bacteriolytic activity against M.luteus.[1]

Publication Abstract from PubMed

4-O-beta-Di-N-acetylchitobiosyl moranoline (2) and 4-O-beta-tri-N-acetylchitotriosyl moranoline (3) were produced by lysozyme-mediated transglycosylation from the substrates tetra-N-acetylchitotetraose, (GlcNAc)4, and moranoline, and the binding modes of 2 and 3 to hen egg white lysozyme (HEWL) was examined by inhibition kinetics, isothermal titration calorimetry (ITC), and x-ray crystallography. Compounds 2 and 3 specifically bound to HEWL, acting as competitive inhibitors with Ki values of 2.01 x 10(-5) and 1.84 x 10(-6) m, respectively. From ITC analysis, the binding of 3 was found to be driven by favorable enthalpy change (DeltaHr degrees ), which is similar to those obtained for 2 and (GlcNAc)4. However, the entropy loss (-TDeltaSr degrees ) for the binding of 3 was smaller than those of 2 and (GlcNAc)4. Thus the binding of 3 was found to be more favorable than those of the others. Judging from the Kd value of 3 (760 nm), the compound appears to have the highest affinity among the lysozyme inhibitors identified to date. X-ray crystal structure of HEWL in a complex with 3 showed that compound 3 binds to subsites -4 to -1 and the moranoline moiety adopts an undistorted (4)C1 chair conformation almost overlapping with the -1 sugar covalently bound to Asp-52 of HEWL (Vocadlo, Davies, G. J., Laine, R., and Withers, S. G. (2001) Nature 412, 835-838). From these results, we concluded that compound 3 serves as a transition-state analogue for lysozyme providing additional evidence supporting the covalent glycosyl-enzyme intermediate in the catalytic reaction.

A novel transition-state analogue for lysozyme, 4-O-beta-tri-N-acetylchitotriosyl moranoline, provided evidence supporting the covalent glycosyl-enzyme intermediate.,Ogata M, Umemoto N, Ohnuma T, Numata T, Suzuki A, Usui T, Fukamizo T J Biol Chem. 2013 Mar 1;288(9):6072-82. doi: 10.1074/jbc.M112.439281. Epub 2013, Jan 9. PMID:23303182[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Maehashi K, Matano M, Irisawa T, Uchino M, Kashiwagi Y, Watanabe T. Molecular characterization of goose- and chicken-type lysozymes in emu (Dromaius novaehollandiae): evidence for extremely low lysozyme levels in emu egg white. Gene. 2012 Jan 15;492(1):244-9. doi: 10.1016/j.gene.2011.10.021. Epub 2011 Oct, 25. PMID:22044478 doi:10.1016/j.gene.2011.10.021
  2. Ogata M, Umemoto N, Ohnuma T, Numata T, Suzuki A, Usui T, Fukamizo T. A novel transition-state analogue for lysozyme, 4-O-beta-tri-N-acetylchitotriosyl moranoline, provided evidence supporting the covalent glycosyl-enzyme intermediate. J Biol Chem. 2013 Mar 1;288(9):6072-82. doi: 10.1074/jbc.M112.439281. Epub 2013, Jan 9. PMID:23303182 doi:http://dx.doi.org/10.1074/jbc.M112.439281

4hpi, resolution 1.19Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA