8hmr: Difference between revisions
Jump to navigation
Jump to search
New page: '''Unreleased structure''' The entry 8hmr is ON HOLD Authors: Upadhyay, S., Kumar, A., Patel, A.K. Description: Crystal Structure of PKM2 mutant L144P [[Category: Unreleased Structures... |
No edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The | ==Crystal Structure of PKM2 mutant L144P== | ||
<StructureSection load='8hmr' size='340' side='right'caption='[[8hmr]], [[Resolution|resolution]] 2.60Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[8hmr]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8HMR OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8HMR FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.6Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=FBP:BETA-FRUCTOSE-1,6-DIPHOSPHATE'>FBP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=OXL:OXALATE+ION'>OXL</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8hmr FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8hmr OCA], [https://pdbe.org/8hmr PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8hmr RCSB], [https://www.ebi.ac.uk/pdbsum/8hmr PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8hmr ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/KPYM_HUMAN KPYM_HUMAN] Glycolytic enzyme that catalyzes the transfer of a phosphoryl group from phosphoenolpyruvate (PEP) to ADP, generating ATP. Stimulates POU5F1-mediated transcriptional activation. Plays a general role in caspase independent cell death of tumor cells. The ratio betwween the highly active tetrameric form and nearly inactive dimeric form determines whether glucose carbons are channeled to biosynthetic processes or used for glycolytic ATP production. The transition between the 2 forms contributes to the control of glycolysis and is important for tumor cell proliferation and survival.<ref>PMID:17308100</ref> <ref>PMID:18191611</ref> <ref>PMID:21620138</ref> | |||
==See Also== | |||
*[[Pyruvate kinase 3D structures|Pyruvate kinase 3D structures]] | |||
== References == | |||
[[Category: | <references/> | ||
[[Category: | __TOC__ | ||
[[Category: Patel | </StructureSection> | ||
[[Category: | [[Category: Homo sapiens]] | ||
[[Category: Large Structures]] | |||
[[Category: Kumar A]] | |||
[[Category: Patel AK]] | |||
[[Category: Upadhyay S]] |
Latest revision as of 22:51, 29 May 2024
Crystal Structure of PKM2 mutant L144PCrystal Structure of PKM2 mutant L144P
Structural highlights
FunctionKPYM_HUMAN Glycolytic enzyme that catalyzes the transfer of a phosphoryl group from phosphoenolpyruvate (PEP) to ADP, generating ATP. Stimulates POU5F1-mediated transcriptional activation. Plays a general role in caspase independent cell death of tumor cells. The ratio betwween the highly active tetrameric form and nearly inactive dimeric form determines whether glucose carbons are channeled to biosynthetic processes or used for glycolytic ATP production. The transition between the 2 forms contributes to the control of glycolysis and is important for tumor cell proliferation and survival.[1] [2] [3] See AlsoReferences
|
|