| [[http://www.uniprot.org/uniprot/RSC6_YEAST RSC6_YEAST]] Component of the chromatin structure-remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. This subunit is essential for mitotic growth and suppresses formamide sensitivity of the RSC8 mutants.<ref>PMID:10025404</ref> <ref>PMID:10329629</ref> <ref>PMID:12072455</ref> <ref>PMID:12183366</ref> <ref>PMID:12697820</ref> <ref>PMID:8980231</ref> <ref>PMID:9685490</ref> [[http://www.uniprot.org/uniprot/ARP9_YEAST ARP9_YEAST]] Component of the chromatin structure remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. This subunit is involved in transcriptional regulation. Heterodimer of ARP9 and ARP7 functions with HMG box proteins to facilitate proper chromatin architecture. Heterodimer formation is necessary for assembly into RSC complex. Part of the SWI/SNF complex, an ATP-dependent chromatin remodeling complex, is required for the positive and negative regulation of gene expression of a large number of genes. It changes chromatin structure by altering DNA-histone contacts within a nucleosome, leading eventually to a change in nucleosome position, thus facilitating or repressing binding of gene-specific transcription factors.<ref>PMID:9844636</ref> <ref>PMID:8980231</ref> <ref>PMID:10025404</ref> <ref>PMID:10329629</ref> <ref>PMID:12183366</ref> <ref>PMID:12072455</ref> <ref>PMID:12805231</ref> <ref>PMID:12697820</ref> [[http://www.uniprot.org/uniprot/RT102_YEAST RT102_YEAST]] Probable component of the chromatin structure-remodeling complex (RSC) which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. Probable component of the SWI/SNF complex, an ATP-dependent chromatin-remodeling complex, is required for the positive and negative regulation of gene expression of a large number of genes. It changes chromatin structure by altering DNA-histone contacts within a nucleosome, leading eventually to a change in nucleosome position, thus facilitating or repressing binding of gene-specific transcription factors. [[http://www.uniprot.org/uniprot/H4_XENLA H4_XENLA]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. [[http://www.uniprot.org/uniprot/RSC3_YEAST RSC3_YEAST]] Component of the chromatin structure-remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. This subunit is required for transcription of ribosomal protein genes and genes involved in the integrity of the cell wall, and also for proper metaphase progression. Together with HTL1, LDB7, NPL6, RSC30 components, defines a fungal-specific module within the RSC complex that plays a role in many cellular functions including the maintenance of cell wall integrity.<ref>PMID:10025404</ref> <ref>PMID:10329629</ref> <ref>PMID:11336698</ref> <ref>PMID:12072455</ref> <ref>PMID:12183366</ref> <ref>PMID:12697820</ref> <ref>PMID:16204215</ref> <ref>PMID:8980231</ref> [[http://www.uniprot.org/uniprot/H32_XENLA H32_XENLA]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. [[http://www.uniprot.org/uniprot/RSC4_YEAST RSC4_YEAST]] Component of the chromatin structure remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton.<ref>PMID:8980231</ref> <ref>PMID:10025404</ref> <ref>PMID:10329629</ref> <ref>PMID:12183366</ref> <ref>PMID:12072455</ref> <ref>PMID:12697820</ref> [[http://www.uniprot.org/uniprot/RSC58_YEAST RSC58_YEAST]] Component of the chromatin structure-remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton.<ref>PMID:10025404</ref> <ref>PMID:10329629</ref> <ref>PMID:12072455</ref> <ref>PMID:12183366</ref> <ref>PMID:12697820</ref> <ref>PMID:8980231</ref> [[http://www.uniprot.org/uniprot/RSC30_YEAST RSC30_YEAST]] Component of the chromatin structure-remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. This subunit is required for transcription of ribosomal protein genes and genes involved in the integrity of the cell wall. Together with HTL1, LDB7, NPL6, RSC3 components, defines a fungal-specific module within the RSC complex that plays a role in many cellular functions including the maintenance of cell wall integrity.<ref>PMID:10025404</ref> <ref>PMID:10329629</ref> <ref>PMID:11336698</ref> <ref>PMID:12072455</ref> <ref>PMID:12183366</ref> <ref>PMID:12697820</ref> <ref>PMID:16204215</ref> <ref>PMID:8980231</ref> [[http://www.uniprot.org/uniprot/ARP7_YEAST ARP7_YEAST]] Component of the chromatin structure remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. This subunit is involved in transcriptional regulation. Heterodimer of ARP7 and ARP9 functions with HMG box proteins to facilitate proper chromatin architecture. Heterodimer formation is necessary for assembly into RSC complex. Part of the SWI/SNF complex, an ATP-dependent chromatin remodeling complex, is required for the positive and negative regulation of gene expression of a large number of genes. It changes chromatin structure by altering DNA-histone contacts within a nucleosome, leading eventually to a change in nucleosome position, thus facilitating or repressing binding of gene-specific transcription factors.<ref>PMID:9844636</ref> <ref>PMID:8980231</ref> <ref>PMID:10025404</ref> <ref>PMID:10329629</ref> <ref>PMID:12183366</ref> <ref>PMID:12072455</ref> <ref>PMID:12805231</ref> <ref>PMID:12697820</ref> [[http://www.uniprot.org/uniprot/RSC8_YEAST RSC8_YEAST]] Component of the chromatin structure-remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. This subunit is essential for mitotic growth and for repression of CHA1 expression.<ref>PMID:10025404</ref> <ref>PMID:10329629</ref> <ref>PMID:12072455</ref> <ref>PMID:12183366</ref> <ref>PMID:12697820</ref> <ref>PMID:8980231</ref> <ref>PMID:9121424</ref> [[http://www.uniprot.org/uniprot/SFH1_YEAST SFH1_YEAST]] Component of the chromatin structure-remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. This subunit is essential for mitotic growth and required for cell cycle progression.<ref>PMID:10025404</ref> <ref>PMID:10329629</ref> <ref>PMID:12072455</ref> <ref>PMID:12183366</ref> <ref>PMID:12697820</ref> <ref>PMID:8980231</ref> <ref>PMID:9154831</ref> [[http://www.uniprot.org/uniprot/STH1_YEAST STH1_YEAST]] Catalytic component of the chromatin structure-remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. This subunit is the essential ATPase of the complex. It is a DNA translocase capable of nucleosome remodeling. Required for full expression of early meiotic genes. Essential for mitotic growth and repression of CHA1 expression. Also involved in G2 phase control.<ref>PMID:10025404</ref> <ref>PMID:10320476</ref> <ref>PMID:10329629</ref> <ref>PMID:12072455</ref> <ref>PMID:12183366</ref> <ref>PMID:12697820</ref> <ref>PMID:8980231</ref> <ref>PMID:9799253</ref> [[http://www.uniprot.org/uniprot/HTL1_YEAST HTL1_YEAST]] Required for cell cycle progression through G2/M transition at temperatures higher than 33 degrees Celsius. Component of the chromatin structure-remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. When associated with the RSC complex, may act coordinately with PKC1 to regulate G2/M transition. Together with LDB7, NPL6, RSC3, RSC30 components, defines a fungal-specific module within the RSC complex that plays a role in many cellular functions including the maintenance of cell wall integrity.<ref>PMID:12417720</ref> <ref>PMID:12684875</ref> <ref>PMID:16204215</ref> [[http://www.uniprot.org/uniprot/A0A1L8G0X3_XENLA A0A1L8G0X3_XENLA]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.[RuleBase:RU000528][SAAS:SAAS00581158] [[http://www.uniprot.org/uniprot/RSC7_YEAST RSC7_YEAST]] Component of the chromatin structure remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. Together with HTL1, LDB7, RSC3, RSC30 components, defines a fungal-specific module within the RSC complex that plays a role in many cellular functions including the maintenance of cell wall integrity. Acidic protein important for nuclear protein localization.<ref>PMID:16204215</ref> [[http://www.uniprot.org/uniprot/RSC9_YEAST RSC9_YEAST]] Component of the chromatin structure-remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. This subunit plays a role in transcriptional response to stress. It is involved in both repression and activation of mRNAs regulated by the target of rapamycin (TOR) kinases, and in the synthesis of rRNA.<ref>PMID:10025404</ref> <ref>PMID:10329629</ref> <ref>PMID:11931764</ref> <ref>PMID:12072455</ref> <ref>PMID:12183366</ref> <ref>PMID:12697820</ref> <ref>PMID:8980231</ref> [[http://www.uniprot.org/uniprot/RSC2_YEAST RSC2_YEAST]] Component of the chromatin structure remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. This subunit is involved in meiotic sporulation through regulating IME2 expression, and is also essential for 2-micron plasmid maintenance and for normal REP1 protein localization.<ref>PMID:12024034</ref> <ref>PMID:8980231</ref> <ref>PMID:10025404</ref> <ref>PMID:10329629</ref> <ref>PMID:12702296</ref> <ref>PMID:12183366</ref> <ref>PMID:12072455</ref> <ref>PMID:12697820</ref> | | [https://www.uniprot.org/uniprot/H32_XENLA H32_XENLA] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. |