2k3s: Difference between revisions
No edit summary |
No edit summary |
||
(10 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
< | ==HADDOCK-derived structure of the CH-domain of the smoothelin-like 1 complexed with the C-domain of apocalmodulin== | ||
<StructureSection load='2k3s' size='340' side='right'caption='[[2k3s]]' scene=''> | |||
You may | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2k3s]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus] and [https://en.wikipedia.org/wiki/Xenopus_laevis Xenopus laevis]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2K3S OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2K3S FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> | |||
-- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2k3s FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2k3s OCA], [https://pdbe.org/2k3s PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2k3s RCSB], [https://www.ebi.ac.uk/pdbsum/2k3s PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2k3s ProSAT]</span></td></tr> | ||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/SMTL1_MOUSE SMTL1_MOUSE] Plays a role in the regulation of contractile properties of both striated and smooth muscles. When unphosphorylated, may inhibit myosin dephosphorylation. Phosphorylation at Ser-301 reduces this inhibitory activity.<ref>PMID:18310078</ref> <ref>PMID:20634291</ref> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/k3/2k3s_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2k3s ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The SMTNL1 protein contains a single type-2 calponin homology (CH) domain at its C terminus that shares sequence identity with the smoothelin family of smooth muscle-specific proteins. In contrast to the smoothelins, SMTNL1 does not associate with F-actin in vitro, and its specific role in smooth muscle remains unclear. In addition, the biological function of the C-terminal CH-domains found in the smoothelin proteins is also poorly understood. In this work, we have therefore determined the solution structure of the CH-domain of mouse SMTNL1 (SMTNL1-CH; residues 346-459). The secondary structure and the overall fold for the C-terminal type-2 CH-domain is very similar to that of other CH-domains. However, two clusters of basic residues form a unique surface structure that is characteristic of SMTNL1-CH. Moreover, the protein has an extended C-terminal alpha-helix, which contains a calmodulin (CaM)-binding IQ-motif, that is also a distinct feature of the smoothelins. We have characterized the binding of apo-CaM to SMTNL1-CH through its IQ-motif by isothermal titration calorimetry and NMR chemical shift perturbation studies. In addition, we have used the HADDOCK protein-protein docking approach to construct a model for the complex of apo-CaM and SMTNL1-CH. The model revealed a close interaction of SMTNL1-CH with the two Ca(2+) binding loop regions of the C-terminal domain of apo-CaM; this mode of apo-CaM binding is distinct from previously reported interactions of apo-CaM with IQ-motifs. Finally, we comment on the putative role of the CH-domain in the biological function of SMTNL1. | |||
Solution structure of the calponin homology (CH) domain from the smoothelin-like 1 protein: a unique apocalmodulin-binding mode and the possible role of the C-terminal type-2 CH-domain in smooth muscle relaxation.,Ishida H, Borman MA, Ostrander J, Vogel HJ, MacDonald JA J Biol Chem. 2008 Jul 18;283(29):20569-78. Epub 2008 May 12. PMID:18477568<ref>PMID:18477568</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2k3s" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Calmodulin 3D structures|Calmodulin 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
== | [[Category: Large Structures]] | ||
== | |||
< | |||
[[Category: Mus musculus]] | [[Category: Mus musculus]] | ||
[[Category: Xenopus laevis]] | [[Category: Xenopus laevis]] | ||
[[Category: Borman | [[Category: Borman MA]] | ||
[[Category: Ishida | [[Category: Ishida H]] | ||
[[Category: MacDonald | [[Category: MacDonald JA]] | ||
[[Category: Ostrander | [[Category: Ostrander J]] | ||
[[Category: Vogel | [[Category: Vogel HJ]] | ||
Latest revision as of 22:09, 29 May 2024
HADDOCK-derived structure of the CH-domain of the smoothelin-like 1 complexed with the C-domain of apocalmodulinHADDOCK-derived structure of the CH-domain of the smoothelin-like 1 complexed with the C-domain of apocalmodulin
Structural highlights
FunctionSMTL1_MOUSE Plays a role in the regulation of contractile properties of both striated and smooth muscles. When unphosphorylated, may inhibit myosin dephosphorylation. Phosphorylation at Ser-301 reduces this inhibitory activity.[1] [2] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe SMTNL1 protein contains a single type-2 calponin homology (CH) domain at its C terminus that shares sequence identity with the smoothelin family of smooth muscle-specific proteins. In contrast to the smoothelins, SMTNL1 does not associate with F-actin in vitro, and its specific role in smooth muscle remains unclear. In addition, the biological function of the C-terminal CH-domains found in the smoothelin proteins is also poorly understood. In this work, we have therefore determined the solution structure of the CH-domain of mouse SMTNL1 (SMTNL1-CH; residues 346-459). The secondary structure and the overall fold for the C-terminal type-2 CH-domain is very similar to that of other CH-domains. However, two clusters of basic residues form a unique surface structure that is characteristic of SMTNL1-CH. Moreover, the protein has an extended C-terminal alpha-helix, which contains a calmodulin (CaM)-binding IQ-motif, that is also a distinct feature of the smoothelins. We have characterized the binding of apo-CaM to SMTNL1-CH through its IQ-motif by isothermal titration calorimetry and NMR chemical shift perturbation studies. In addition, we have used the HADDOCK protein-protein docking approach to construct a model for the complex of apo-CaM and SMTNL1-CH. The model revealed a close interaction of SMTNL1-CH with the two Ca(2+) binding loop regions of the C-terminal domain of apo-CaM; this mode of apo-CaM binding is distinct from previously reported interactions of apo-CaM with IQ-motifs. Finally, we comment on the putative role of the CH-domain in the biological function of SMTNL1. Solution structure of the calponin homology (CH) domain from the smoothelin-like 1 protein: a unique apocalmodulin-binding mode and the possible role of the C-terminal type-2 CH-domain in smooth muscle relaxation.,Ishida H, Borman MA, Ostrander J, Vogel HJ, MacDonald JA J Biol Chem. 2008 Jul 18;283(29):20569-78. Epub 2008 May 12. PMID:18477568[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|