1pv6: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(13 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1pv6.gif|left|200px]]
<!--
The line below this paragraph, containing "STRUCTURE_1pv6", creates the "Structure Box" on the page.
You may change the PDB parameter (which sets the PDB file loaded into the applet)
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
or leave the SCENE parameter empty for the default display.
-->
{{STRUCTURE_1pv6|  PDB=1pv6  |  SCENE=  }}
'''Crystal structure of lactose permease'''


==Crystal structure of lactose permease==
<StructureSection load='1pv6' size='340' side='right'caption='[[1pv6]], [[Resolution|resolution]] 3.50&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[1pv6]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1PV6 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1PV6 FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.5&#8491;</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1pv6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1pv6 OCA], [https://pdbe.org/1pv6 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1pv6 RCSB], [https://www.ebi.ac.uk/pdbsum/1pv6 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1pv6 ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/LACY_ECOLI LACY_ECOLI] Responsible for transport of beta-galactosides into the cell, with the concomitant import of a proton (symport system).
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/pv/1pv6_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1pv6 ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Membrane transport proteins that transduce free energy stored in electrochemical ion gradients into a concentration gradient are a major class of membrane proteins. We report the crystal structure at 3.5 angstroms of the Escherichia coli lactose permease, an intensively studied member of the major facilitator superfamily of transporters. The molecule is composed of N- and C-terminal domains, each with six transmembrane helices, symmetrically positioned within the permease. A large internal hydrophilic cavity open to the cytoplasmic side represents the inward-facing conformation of the transporter. The structure with a bound lactose homolog, beta-D-galactopyranosyl-1-thio-beta-D-galactopyranoside, reveals the sugar-binding site in the cavity, and residues that play major roles in substrate recognition and proton translocation are identified. We propose a possible mechanism for lactose/proton symport (co-transport) consistent with both the structure and a large body of experimental data.


==Overview==
Structure and mechanism of the lactose permease of Escherichia coli.,Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S Science. 2003 Aug 1;301(5633):610-5. PMID:12893935<ref>PMID:12893935</ref>
Membrane transport proteins that transduce free energy stored in electrochemical ion gradients into a concentration gradient are a major class of membrane proteins. We report the crystal structure at 3.5 angstroms of the Escherichia coli lactose permease, an intensively studied member of the major facilitator superfamily of transporters. The molecule is composed of N- and C-terminal domains, each with six transmembrane helices, symmetrically positioned within the permease. A large internal hydrophilic cavity open to the cytoplasmic side represents the inward-facing conformation of the transporter. The structure with a bound lactose homolog, beta-D-galactopyranosyl-1-thio-beta-D-galactopyranoside, reveals the sugar-binding site in the cavity, and residues that play major roles in substrate recognition and proton translocation are identified. We propose a possible mechanism for lactose/proton symport (co-transport) consistent with both the structure and a large body of experimental data.


==About this Structure==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
1PV6 is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1PV6 OCA].
</div>
<div class="pdbe-citations 1pv6" style="background-color:#fffaf0;"></div>


==Reference==
==See Also==
Structure and mechanism of the lactose permease of Escherichia coli., Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S, Science. 2003 Aug 1;301(5633):610-5. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/12893935 12893935]
*[[Lactose Permease|Lactose Permease]]
*[[Symporter 3D structures|Symporter 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Escherichia coli]]
[[Category: Escherichia coli]]
[[Category: Single protein]]
[[Category: Large Structures]]
[[Category: Abramson, J.]]
[[Category: Abramson J]]
[[Category: Iwata, S.]]
[[Category: Iwata S]]
[[Category: Kaback, H R.]]
[[Category: Kaback HR]]
[[Category: Kasho, V.]]
[[Category: Kasho V]]
[[Category: Smirnova, I.]]
[[Category: Smirnova I]]
[[Category: Verner, G.]]
[[Category: Verner G]]
[[Category: Membrane protein]]
[[Category: Sugar transport]]
[[Category: Symport]]
[[Category: Transport]]
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sat May  3 05:31:17 2008''

Latest revision as of 21:15, 29 May 2024

Crystal structure of lactose permeaseCrystal structure of lactose permease

Structural highlights

1pv6 is a 2 chain structure with sequence from Escherichia coli. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3.5Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

LACY_ECOLI Responsible for transport of beta-galactosides into the cell, with the concomitant import of a proton (symport system).

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Membrane transport proteins that transduce free energy stored in electrochemical ion gradients into a concentration gradient are a major class of membrane proteins. We report the crystal structure at 3.5 angstroms of the Escherichia coli lactose permease, an intensively studied member of the major facilitator superfamily of transporters. The molecule is composed of N- and C-terminal domains, each with six transmembrane helices, symmetrically positioned within the permease. A large internal hydrophilic cavity open to the cytoplasmic side represents the inward-facing conformation of the transporter. The structure with a bound lactose homolog, beta-D-galactopyranosyl-1-thio-beta-D-galactopyranoside, reveals the sugar-binding site in the cavity, and residues that play major roles in substrate recognition and proton translocation are identified. We propose a possible mechanism for lactose/proton symport (co-transport) consistent with both the structure and a large body of experimental data.

Structure and mechanism of the lactose permease of Escherichia coli.,Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S Science. 2003 Aug 1;301(5633):610-5. PMID:12893935[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S. Structure and mechanism of the lactose permease of Escherichia coli. Science. 2003 Aug 1;301(5633):610-5. PMID:12893935 doi:http://dx.doi.org/10.1126/science.1088196

1pv6, resolution 3.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA